
Controlled Generation of Hard and Easy Bayesian Networks:

Impact on Maximal Clique Size in Tree Clustering

Ole J. Mengshoel
RIACS

NASA Ames Research Center
Mail Stop 269-3

Moffett Field, CA 94035
omengshoel@riacs.edu

David C. Wilkins
Center for the Study of Language and Information

Stanford University
Stanford, CA 94305
dwilkins@stanford.edu

Dan Roth
Department of Computer Science

University of Illinois, Urbana-Champaign
201 N. Goodwin
Urbana, IL 61801
danr@cs.uiuc.edu

Abstract

This article presents and analyzes algorithms that systematically generate random Bayesian networks
of varying difficulty levels, with respect to inference using tree clustering. The results are relevant to
research on efficient Bayesian network inference, such as computing a most probable explanation or
belief updating, since they allow controlled experimentation to determine the impact of improvements to
inference algorithms. The results are also relevant to research on machine learning of Bayesian networks,
since they support controlled generation of a large number of data sets at a given difficulty level. Our
generation algorithms, called BPART and MPART, support controlled but random construction of
bipartite and multipartite Bayesian networks. The Bayesian network parameters that we vary are the
total number of nodes, degree of connectivity, the ratio of the number of non-root nodes to the number of
root nodes, regularity of the underlying graph, and characteristics of the conditional probability tables.
The main dependent parameter is the size of the maximal clique as generated by tree clustering. This
article presents extensive empirical analysis using theH�	
� tree clustering approach as well as theoretical
analysis related to the random generation of Bayesian networks using BPART and MPART.

1 Introduction

Essentially all inference problems studied using the Bayesian network (BN) formalism are known to be
computationally hard in the general case [14, 60, 66]. Given the central role of BNs in a wide range of
automated reasoning applications, for example in medical diagnosis [3, 43, 67], probabilistic risk analysis
[9,45], language understanding [10,12], intelligent data analysis [40,54,61], error correction coding [27,28,48,
49], and biological pedigree analysis [68], developing efficient algorithms for these inference problems is an
important research problem. The performance of exact Bayesian network inference algorithms – including
tree clustering algorithms [2,33,38,39,46,65], conditioning algorithms [16,17,22,32,57,58,64], and elimination
algorithms [19, 47, 72] – depends on the treewidth or the optimal maximal clique size of a BN’s induced
clique tree [5,17,20,21]. Treewidth was initially a theoretical concept related to graph minors [59]; it has more
recently been established that the notion of treewidth plays a key role in the analysis of algorithms [8,20,44].

A significant component of research on inference in BNs has to be experimental and rely on the use of
BN instances. Similar experiments are needed and have indeed been performed for other problems, including
the satisfiability problem (SAT) [11,13,26,55,62,63]. For SAT, it has been established empirically that there

1

is a phase transition in the probability of satisfiability of an instance drawn from a certain distribution [55].
This phase transition phenomenon has been found to be closely related to a parameter describing the
constrainedness of instances, namely the ratio between the number of variables V and the number of clauses
C, denoted the C/V -ratio. Interestingly, it has been found that algorithmic hardness also varies with the
C/V -ratio, at least for certain algorithms [55]. As the C/V -ratio is varied, there is a variation in problem
difficulty (or hardness), as measured in mean or median inference time for certain algorithms across a sample
of problems. Maximal hardness for several algorithms occurs in the phase transition region.

Experimental work in Bayesian network inference can also be performed using randomly generated in-
stances. In this article, we investigate the following research questions: How should BNs for experimentation
be randomly generated, such that their computational hardness can be understood, analyzed, and controlled?
More specifically, is it fruitful to generalize the C/V -ratio from SAT to a BN setting? If it is, what is the
relationship between the C/V -ratio and treewidth or maximal clique size?

Answering these research questions is important for several reasons. Generating problem instances ran-
domly, a common practice in the BN community [7, 17, 34, 35, 41, 56, 69, 70], may result in easy inference
problems that do not present a challenge to inference algorithms [4,11,25], even though worst case complex-
ity results show that both exact and approximate MPE computation is NP-hard [1, 66]. In this article we
extend previous research on randomly generating BN instances and present an experimental paradigm for
systematically generating increasingly hard random Bayesian network instances for tree clustering. We de-
scribe two algorithms for controlled generation of BNs, the bipartite (BPART) and multipartite (MPART)
construction algorithms, and prove several properties for the BNs that they construct. For the BPART
case, this includes the distribution over the root node out-degrees and the minimum out-degree as well as
the (small) probability that an irregular BN is also regular. For MPART networks [41] we analyze the
relationship to BPART BNs and in particular present a formula for the probability that an MPART BN
is bipartite. We characterize properties of the BN generation algorithms in order to better understand the
factors that in turn contribute to the hardness of inference, so that thorough benchmarking and comparison
of algorithms can be performed.

The inference approach we focus on, tree clustering as implemented in the H�	
� algorithm, was intro-
duced as a belief updating algorithm [46], and was later extended to encompass belief revision [18]. Thus,
in the tree clustering approach, computing marginal distributions and most probable explanations (MPEs)
are closely related. In particular, they both depend on the total clique tree size as well as the maximal
clique size of a BN’s clique tree. In a BN, let V be the number of root nodes and C the number of non-root
nodes. We show that the C/V -ratio is a key parameter for BN inference hardness, as it is for SAT [11, 55].
Analytically, we provide a conservative lower bound on total clique tree size and introduce a new class of
BNs, only-child BNs, for which we give sufficient conditions for Hamiltonicity and longest cycle. Formation
of cycles, including Hamiltonian cycles, is important because they often need fill-in edges in order for a
triangulated graph to be constructed, and cycles thus significantly contribute to clique tree size.

Even when the topology is restricted to the BPART or MPART types, we identify several input para-
meters that can be varied when randomly generating BNs. We empirically study a few of these parameters
in detail and show how changing them affects properties of the generated BNs which again can increase
computational hardness for tree clustering. For both the BPART and MPART constructions, generating
random networks may result in very easy instances, but a careful selection of the parameters along the
dimensions we discuss, even while keeping the size of the networks fixed, gradually increases the complexity
of inference and results in networks that the tree clustering algorithm cannot handle. A main empirical
result is that the C/V -ratio can be used to predict an upper bound on the treewidth (or optimal maximal
clique size) of the induced clique trees for samples of BPART and MPART BNs. Our selection of families
of hard networks extends research on generating hard instances for the satisfiability problem [4, 11, 25, 55]
as well as existing research in the BN community [34, 41, 70]. Increasing the C/V -ratio causes, for certain
values for C and V , an approximately linear increase in the upper bound on treewidth or the number of
nodes in the largest clique. In other words, we obtain an easy-hard-harder pattern for tree clustering algo-
rithms including H�	
�, which contrasts with the easy-hard-easy pattern observed for SAT formulas using
the Davis-Putnam algorithm [55]. Experimenters may thus use the C/V -ratio directly, instead of or as a
complement to maximal clique size or treewidth. In addition to the C/V -ratio, we study the regularity of
a BN’s underlying graph and the distributional nature of conditional probability tables.

The rest of this article is organized as follows. Section 2 introduces Bayesian network definitions and

2

notation as well as the MPE problem. In Section 3 we briefly describe inference and in particular tree
clustering and the H�	
� algorithm as well as the concepts of maximal clique size and treewidth. Section
4 discusses the use of application BNs and randomly generated BNs for experimentation. In particular,
Bayesian networks generated by the BPART algorithm as well as theMPART algorithm are presented and
analyzed; there are also results on their relationship. Section 5 discusses the interaction between properties
of randomly generated BNs and their hardness for tree clustering algorithms and H�	
� in particular. In
Section 6 we turn to the experimental part of the article, with experimental results for BPART andMPART
networks, using the state-of-the-art inference system H�	
� to study characteristics of the maximal clique
sizes generated as well as inference times. Section 7 concludes and discusses future work.

Earlier versions of this research have been reported previously [51, 52]. In closely related work we have
developed and investigated a stochastic local search approach to computing MPEs and compared it to tree
clustering for varying C/V -ratios [51,53].

2 Preliminaries

A Bayesian network (BN) represents a multi-variate probability distribution as a directed acyclic graph
(DAG), where the nodes represent random variables.

Definition 1 (Directed acyclic graph (DAG)) Let G = (X,E) be a directed acyclic graph (DAG) with
nodes X = {X1, . . . ,Xn} and edges E = {E1, . . . , Em}. An ordered tuple Ei = (Y,X), where 1 ≤ i ≤ m and
X, Y ∈X, represents a directed edge from Y to X. Here, ΠX denotes the parents of X: ΠX = {Y | (Y,X) ∈
E}. Similarly, ΨX denotes the children of X: ΨX = {Z | (X,Z) ∈ E}. The out-degree and in-degree of a
node X is o(X) = |ΨX | and i(X) = |ΠX | respectively. The minimal non-zero out-degree of any node in G is
denoted δo (G) and the minimal non-zero in-degree of any node in G is denoted δi (G); n(G) = |X| is the
number of nodes in G.

The following characterization of graphs in general and BNs in particular turns out to be fruitful when
analyzing the performance of inference algorithms on BNs.

Definition 2 (Root node, non-root node, leaf node) Let G be a non-empty DAG and let X be a node
in G. If i(X) = 0 then X is a root node. If i(X) > 0 then X is a non-root node. If i(X) > 0 and o(X) = 0
then X is a leaf node.

Any non-empty DAG G has at least one root node so V � 1 and the C/V -ratio is always well-defined
for non-empty DAGs according to Definition 2. Only non-empty graphs are considered in the rest of this
article. In the important special case of bipartite DAGs, which we formally introduce below, the C/V -ratio
is the ratio of the number of leaf nodes to the number of root nodes.

Definition 3 (Bipartite DAG) Let G = (X,E) be a DAG. If X can be split into partite sets V =
{X ∈X | i (X) = 0} (the root nodes) and C = {X ∈X | i (X) > 0} (the leaf nodes) such that any (V,C) ∈
E is such that V ∈ V and C ∈ C then G is a bipartite DAG; B is the set of all bipartite DAGs.

In tree clustering algorithms, which we return to in Section 3, a directed graph (BN) is transformed into
an undirected graph (a clique tree) over which inference is performed.

Definition 4 (Undirected graph) Let G = (X,E) be an undirected graph with nodes X = {X1, . . . ,Xn}
and edges E = {E1, . . . , Em}. An undirected edge Ei = {X,Y } is a set where 1 ≤ i ≤ m and X,Y ∈ X.
The set of adjacent (or neighbor) nodes of a node X is denoted a(X) = {Y | {X,Y } ∈ E} while its degree,
d(X) = |a(X)|, is the number of neighbors X has in G. Finally, δ(G) is the minimal degree of all nodes in
G and n(G) = |X| is the number of nodes in G.

In this article we will usually not distinguish, in BNs, between a graph node and the corresponding
random variable. For the purpose of this article we also focus exclusively on labelled graphs – graphs with
distinguishable vertices – both in the directed and the undirected cases. When parts of a graph (BN) are
studied, the following notion of an induced subgraph is useful.

3

Definition 5 (Induced subgraph) Let X be the nodes in a directed graph. The product X× X is defined
as {(Xi, Xj) | Xi, Xj ∈X}. Let Y be the nodes in an undirected graph. The product Y× Y is defined
as {{Yi, Yj} | Yi, Yj ∈ Y }. Let G = (Z,E) be a (directed or undirected) graph. The induced subgraph
G [W] = (W , E [W]) is a graph with nodes W ⊆ Z and edges E [W] = (W ×W) ∩E.

We also extend the graph notation and definitions to BNs, understanding that it applies to the graph
part of the formal definition of BNs, which follows. First, we have the following definition.

Definition 6 (BN node) A discrete BN node X is a random variable with a discrete, finite state space
ΩX = {x1, . . . , xk}.

While BN nodes can also be continuous, this article is restricted to the discrete case and we will take
“BN node” to mean “discrete BN node” in the following.

Definition 7 (Bayesian network) A Bayesian network is a tuple β = (X, E, P), where (X, E) is a
DAG with an associated set of conditional probability distributions P = {Pr(X1 | ΠX1

), . . . , Pr(Xn | ΠXn
)}.

Here, Pr(Xi | ΠXi
) is the conditional probability distribution for Xi ∈ X. Further, let πXi

represent the
instantiation of the parents ΠXi

of Xi. The independence assumptions encoded in (X, E) imply the joint
probability distribution

Pr(x) = Pr(x1, . . . , xn) = Pr(X1 = x1, . . . , Xn = xn) =
n∏

i=1

Pr(xi | πXi
). (1)

Bayesian networks are also known as belief networks, Bayesian belief networks, or probabilistic networks;
a conditional probability distribution Pr(Xi | ΠXi

) is also known as a conditional probability table (CPT).
Sometimes a BN is provided with observations or evidence by setting or clamping m nodes {O1, . . . , Om}

to known states o = {O1 = o1, . . ., Om = om } = {o1, . . ., om}. These nodes are called observation nodes
and need to be considered when computing a most probable explanation, which is defined below.

Definition 8 (Explanation) Consider a BN β = (X, E, P) with X = {X1, . . ., Xn} and observations
o = {o1, . . .,om} for m ≤ n. An explanation x assigns states to all non-evidence nodes {Xm+1, . . ., Xn}: x
= {xm+1, . . ., xn} = {Xm+1 = xm+1, . . ., Xn = xn}.

When discussing an explanation x, the BN β for which x is an explanation is easily understood and
therefore left implicit. Among explanations, the u most probable ones are of particular interest.

Definition 9 (Most probable explanation (MPE)) Let x range over all explanations in a BN β. Find-
ing a most probable explanation (MPE) in β is the problem of computing an explanation x∗ such that
Pr (x∗) ≥ Pr (x). The u most probable explanations is X∗ = {x∗1, . . . ,x∗u} where Pr (x∗) = Pr (x∗1) =
· · · = Pr (x∗u) and Pr (x∗i) ≥ Pr (x) for 1 ≤ i ≤ u.

Here, u = |X∗| is simply the number of MPEs in a BN and no other explanation has higher probability
than x∗ ∈ X∗. Since there might be u > 1 MPEs with the same probability we say “an” or “one” MPE
rather than “the” MPE. As is common, we compute just one MPE x∗ even when multiple MPEs exist in
a BN. Following Pearl we sometimes denote computing an MPE as belief revision, while computing the
marginal distribution over a BN node is also denoted belief updating [58].

It has been shown that exact MPE computation is NP-hard [66]. The problem of relative approximation
of an MPE is to find an assignment with probability close to that of an MPE to within a small ratio. This
problem has also been proven to be NP-hard [1]. Belief updating is computationally hard also [14,60].

3 Inference in Bayesian Networks

In addition to the arguments referring to the mapping from SAT, the claim that we have a way to generate
hard and easy BNs for the inference task needs to be supported analytically and experimentally by considering
one or more BN inference algorithms. BN inference algorithms can be classified as exact or approximate.

4

Exact BN inference algorithms are the main focus in this article and include tree clustering algorithms
[2,33, 38,39, 46,65], conditioning algorithms [16, 17,22, 32,57, 58, 64], elimination algorithms [19,47, 72], and
hybrid exact methods [20].

For the purpose of this article, we study in detail one of the most prominent inference approaches – the
tree clustering approach and more specifically the H�	
� algorithm.1 Tree clustering is further discussed in
Section 3.1. Section 3.2 briefly discusses other exact BN inference algorithms.

3.1 Inference by Tree Clustering: The Role of Maximal Clique Size

Tree clustering is currently one of the major approaches to inference in multiply connected Bayesian networks
[58]. Like other tree clustering algorithms, the H�	
� algorithm employs two phases: a compilation (or
clustering) phase and a propagation (or run-time) phase [2, 37, 39, 46]. During compilation, a Bayesian
network is transformed into cliques organized in a clique tree. During propagation, evidence is propagated
in the clique tree, leading to belief updating or belief revision computations as appropriate.

A clique (or junction) tree is constructed from a Bayesian network in the following way by the H�	
�
algorithm. First, an initial moral graph β′ is constructed by making an undirected copy of β and then
augmenting it as follows. Let X systematically range over all nodes in β. For each node X, H�	
� adds to
β′ an edge between each pair of nodes in ΠX if no such edge already exists in β

′. Second, H�	
� triangulates
the moral graph β′, creating a triangulated graph β′′. Triangulation amounts to adding fill-in edges to the
moral graph β′ such that no chordless cycle of length greater than three exists. Third, a clique tree β′′′

is created from the triangulated graph β′′.2 This clique tree – which consists of cliques and separators
– must exhibit the property that for any two clique nodes F and H in the tree, all nodes between them
contain F ∩H. In β′′′, where both cliques and separators have belief tables associated with them, the joint
probability Pr(X) is the product of the clique belief tables divided by separator belief tables.

The following quantities are important for characterizing computation in the clique tree [46].

Definition 10 (Clique tree parameters) Let Γ be the set of cliques in the clique tree β′′′, created from
a BN β using tree clustering. The state space size of a clique H in β′′′, g, is defined as

g = |ΩH | =
∏

X∈H

|ΩX | , (2)

where X is a node in β. The maximal number of nodes in a clique in β′′′, h, is defined as

h = sup
H∈Γ

|H| . (3)

The total clique tree size (or total state space size) k of β′′′ is defined as

k =
∑

H∈Γ

|ΩH | , (4)

while ℓ, the maximal clique size (or maximal state space size of a clique) in β′′′, is

ℓ = sup
H∈Γ

|ΩH | . (5)

A functional notation, for example k
(
β′′′
)
or ℓ

(
β′′′
)
, is sometimes used in this article in order to make

β′′′ explicit. For the optimal (minimal) values, h∗, k∗, and ℓ∗ are used for h, k, and ℓ respectively. When
the above parameters are considered random variables, the letters G, H, K, and L are used.

Some of our investigations are restricted to nodes with two states, S = 2, and in this case the state space
size g of a clique (2) simplifies to

g = |ΩH | =
∏

X∈H

|ΩX | = S|H| = 2|H|.

1For the sake of simplicity, we generally do not distinguish between (i) the H�	
� algorithm and (ii) the H�	
� system, namely
a software implementation of the H�	
� algorithm. In general, this article discusses the H�	
� system in the experimental
parts of the article, and the H�	
� algorithm elsewhere.

2Some tree clustering algorithms, but not H�	
�, employ an intermediate step right before clique tree construction. This
intermediate step creates a junction graph or system of cliques from the triangulated graph.

5

When all BN nodes have S states the maximal number h of nodes in a clique is the same as the number of
nodes in a clique of maximal size ℓ. Consequently, we do not distinguish between these two quantities in
this article, even though in general they need to be kept distinct. It is also easy to see that

ℓ = Sh = 2h. (6)

When a BN is highly connected, as in some of the networks considered in this article, the cliques in the
clique tree become very large, thus making tree clustering inference slow. A crucial step in the process of
creating a clique tree from a Bayesian network is triangulation – the construction of a triangulated moral
graph β′′. Triangulation determines g, h, k, and ℓ. Optimal triangulation including the computation of h∗

is unfortunately known to be NP-hard, but there are heuristic algorithms such as M
�
���F
��I�W�
	��,
M
�
���F
��I�S
��,M
�
���C�
���W�
	��,M
�
���C�
���S
�� that compute upper bounds on h∗,
k∗, and ℓ∗ and in practice perform triangulation quite well [33,37,42].
H�	
� was introduced as a belief updating algorithm [46], and was later extended to MPE computation

(belief revision) [18], using essentially the same clique tree β′′′ in both cases. Thus, in the H�	
� approach,
computing marginal distributions and computing MPEs are closely related. There are two main algorithmic
differences: First, when computing an MPE x∗ ∈ X∗, maximization is performed, while in belief updating,
summation is performed. For our purposes, this step has essentially the same performance in both cases.
Second, H�	
� belief revision must, in cases of multiple most probable explanations |X∗| > 1, perform
propagation several times [50]. On the other hand, one propagation is sufficient in H�	
� belief updating.
Of these two differences, the latter has a more significant impact on the computational cost of propagation
and is further discussed in Section 5.6.

3.2 Inference, Maximal Clique Size, and Treewidth

The complexity of most exact Bayesian network inference algorithms – including tree clustering algorithms,
conditioning algorithms, and elimination algorithms – has been found to depend on treewidth ̟∗ or on
optimal maximal clique size h∗, where ̟∗ = h∗−1 [20,46]. Time and space complexity for tree clustering is
exponential in the treewidth of the clique tree. Conditioning algorithms [16,17, 22,32, 57,58, 64] transform
a multiply connected graph into several singly connected graphs by introducing cycle cutsets, and perform
computations over each singly connected graph. The time complexity of conditioning, for a minimal cycle
cutset of size c, has been bounded from below by treewidth ̟∗ in the inequality ̟∗ ≤ c + 1 [8]. The time
complexity of elimination is closely related to that of tree clustering, and also depends on the treewidth
̟∗ [5, 21]. Finally, there are hybrid algorithms – combining tree clustering, conditioning, and elimination
– that trade off space- and time-complexity and again there is a dependency on treewidth [17, 20]. In one
such hybrid algorithm it is possible to move from O(n) space and O (n exp(̟∗ logn)) time to O(n exp(̟∗))
space and O (n exp(̟∗)) time in a gradual fashion [17].

Unfortunately, computing treewidth ̟∗ for a graph is in itself computationally hard. In particular, the
problem of determining whether the treewidth of a given graph is bounded by an integer k has been shown
to be NP-complete [6]. However, it is possible to empirically establish lower bounds for treewidth as well
as upper bounds, computed using heuristics, for treewidth in polynomial time [44]. Optimal triangulation
is closely related to computing treewidth, and triangulation heuristics play a key role in tree clustering
algorithms, as discussed above and further investigated in the experiments in Section 6.

4 Bayesian Networks for Experimentation and Benchmarking

There are several ways to experiment with inference algorithms using BNs. In this section we discuss the
two main classes of BNs used for experimentation in the literature: application BNs and randomly generated
BNs. While essential, we argue that application BNs also have limitations. It is non-trivial, for application
BNs, to understand how different BN parameters interact and contribute to inference complexity. Using
randomly generated BNs, we can start addressing those problems, but still need to make sure that the BNs
generated are such that inference hardness can – at least to some extent – be controlled and predicted.

In Section 4.1 we define subsets of the set of Bayesian networks. Section 4.2 briefly discusses BNs from
applications. In Section 4.3 we discuss our two approaches to randomly generating Bayesian networks, the
BPART algorithm and the MPART algorithm.

6

Child-regular set UCR :
Non-leaf nodes have the
same number of children

Child-irregular set UCI:
Non-leaf nodes typically have
different number of children

Parent-regular set UPR :
Non-root nodes have the
same number of parents

Class A: Parent-regular
and Child-regular
UA := UPR ∩ UCR

Classical Gallager codes [28,49]
Regular kCNF
Read-ℓ formulas

Regular multipartite graphs

Class B: Parent-regular
and Child-irregular
UB := UPR ∩ UCI

Modern Gallager codes [48,49]
Irregular kCNF formulas [55]
Irregular multipartite graphs
Biological pedigrees [68]

Parent-irregular set UPI:
Non-root nodes typically have
different number of parents

Class C: Parent-irregular
and Child-regular
UC := UPI ∩ UCR
Read-ℓ formulas

Class D: Parent-irregular
and Child-irregular
UD := UPI ∩ UCI

Many application BNs
Mixed CNF formulas

Table 1: An informal presentation of directed graphs, including Bayesian networks, along the two orthogonal
dimensions of child-regularity and parent-regularity, leading to the following four classes. Class A: Parent-
regular and child-regular; Class B: Parent-regular and child-irregular; Class C: Parent-irregular and child-
regular; and Class D: Parent-irregular and child-irregular. Class D is unconstrained.

4.1 Classes of Bayesian Networks

It turns out that the regularity of a BN’s underlying graph varies between applications and also has a
major impact on maximal clique size and thus on BN inference times. In order to discuss the effect of
graph regularity on BN inference, we introduce the following terminology which applies to directed graphs
in general.

Definition 11 (Regularity) Let G = (X, E) be a directed graph. If any two nodes X,Y ∈ X with in-
degrees i(X), i(Y) > 0 have the same number of parents i(X) = i(Y) then we say that G is parent-regular, or
G ∈ UPR . If G is not parent-regular then it is parent-non-regular, or G ∈ UPN , with UPR ∩ UPN = ∅. If
G is either parent-regular or parent-non-regular then it is parent-irregular, or G ∈ UPI, where UPI := UPR∪
UPN . If any two nodes X,Y ∈ X with out-degrees o(X), o(Y) > 0 have the same number of children
o(X) = o(Y) then G is child-regular, or G ∈ UCR . If G is not child-regular then it is child-non-regular,
or UCN , with UCR ∩ UCN = ∅. If G is either child-regular or child-non-regular then it is child-irregular:
G ∈ UCI where UCI := UCR ∪ UCN .

We note that the above definitions allow a non-trivial graph G to be both parent regular and parent-
irregular or child-regular and child-irregular: G ∈ UPI ∩ UPR or G ∈ UCI ∩ UCR , where UPI ∩ UPR as well as
UCI ∩ UCR are non-empty. This turns out to simplify the construction algorithms along with their analysis
as we will see in Section 4.3.4. We will also see that the probability of a BN that is an element of UCI is
also an element of UCR , in other words the size of UCI ∩ UCR , is extremely small for the constructions and
parameter values considered there.

Based on the regularity concepts introduced in Definition 11, the following four classes of directed graphs
(and BNs) are identified.

Definition 12 (Class A, Class B, Class C, Class D directed graphs) A directed graph G is a Class
A (or “regular”) graph if it is child-regular and parent-regular: G ∈ UA where UA := UCR∩ UPR . If G is
child-irregular and parent-regular then it is a Class B (or “irregular”) graph: G ∈ UB where UB := UCI∩
UPR . If G is child-regular and parent-irregular then it is a Class C graph: G ∈ UC where UC := UCR∩ UPI .
If G is child-irregular and parent-irregular then it is a Class D (or unconstrained) graph: G ∈ UD where UD
:= UCI∩ UPI. The sets of all Class A, Class B, Class C and Class D bipartite graphs (BNs) are respectively
introduced as follows: BA := UA ∩ B, BB := UB ∩ B, BC := UC ∩ B, and BD := UD ∩ B.

Table 1 summarizes some families of BNs, including BNs for error correction coding [27, 28, 48, 49], and
how they can be classified into our four classes UA, UB, UC , and UD. The following example and Figure 1

7

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

Class A

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

Class B

Class C Class D

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

Class A

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

Class B

Class C Class D

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6

Figure 1: Examples of Class A, Class B, Class C, and Class D bipartite Bayesian networks (BNs). The
Class A BN is parent-regular and child-regular (a “regular” BN); the Class B BN is parent-regular and
child-non-regular and thus child-irregular (an “irregular” BN); the Class C BN is parent-non-regular (thus
parent-irregular) and child-regular; and the Class D BN is parent-non-regular (thus parent-irregular) as well
as child-non-regular (thus child-irregular) and therefore unconstrained.

illustrate the classes of networks presented in Definition 12 and Table 1.

Example 13 Figure 1 contains examples of Class A, Class B, Class C, and Class D BNs.

In propositional logic, the notion of read-ℓ means that a variable is used or “read” ℓ times in the clauses
of a formula. This concept is used in Table 1. Also, the development in information theory from classical
Gallager codes to modern Gallager codes fits into our framework as presented in Table 1. Gallager’s original
codes [28] can be encoded as Class A BNs according to our terminology. Modern Gallager codes [48], on
the other hand, correspond to Class B BNs. Table 1 also includes biological pedigree BNs [68], which are
typically also Class B BNs. In a BN representing a pedigree, non-root nodes typically have two parents, but
the number of children per non-leaf node can vary.

Note that regularity can easily be made more gradual than in the framework presented in Table 1. For
example, one could use the variance in in-degree and out-degree as a measure of regularity. With this more
general measure, high variance means irregular, low variance means regular. In this article, however, we are
concerned with two extreme cases and leave other variations for future work. We investigate, under a minor
relaxation introduced in Definition 16, the effect of regularity by considering Class A BNs as well as Class
B BNs. We denote the former regular and the latter irregular BNs when there is no chance of confusion.

4.2 Bayesian Networks from Applications

BN inference algorithms may be studied empirically by evaluating their performance on one or several
BNs from applications [41, 51, 56]. For example, BNs may be taken from Friedman’s Bayesian Network
Repository at http://www.cs.huji.ac.il/labs/compbio/Repository/. Application BNs are obviously
very important when performing experimental studies. However, we believe that it is difficult to understand
the performance of a BN inference algorithm by studying only application BNs. First, there is a problem
of dimensionality in that application BNs vary considerably in their many topological and distributional
parameters. It is therefore unclear how much one can learn from pooling BNs from different applications.
Second, the inference times vary significantly between application BNs, and there is in general no clear
correlation between any of the BN parameters and the inference times [51]. Third, the number of BNs per
application is most often very small – typically there is one BN per application. Restricting oneself to BNs
from one application is thus not desirable: It is very difficult to obtain good statistics using small samples.

8

There is also a more fundamental limitation associated with the use of application BNs as the “gold
standard” for performance. Some application BNs might have been fine-tuned to give adequate performance
using existing inference algorithms. It seems very valuable to construct BNs that are not biased in this way,
in order to thoroughly characterize existing algorithms as well as lay the groundwork for novel algorithms
and more challenging applications.

4.3 Bayesian Network Generation Algorithms

A potential solution to some of the limitations associated with using application BNs for empirical research
is to randomly generate BN instances [7, 17, 34, 41, 56, 69, 70]. Using randomly generated BNs, one can
create as many BNs as needed to provide a significant evaluation. This approach reduces the problem of
dimensionality, since one may vary the BNs generated along just one or a few dimensions at a time.

Issues related to randomly generating BNs are addressed in the remainder of this section. In Section 4.3.1
we present the parameters we have used to (partly) control the process of randomly generating Bayesian
networks. In Section 4.3.2, Section 4.3.3, and Section 4.3.4 we present the BPART algorithm used to
generate a certain class of bipartite networks, for which the mapping from the satisfiability problem (SAT)
is fairly direct. In Section 4.3.5 we discuss the MPART construction, which we show to be related to the
BPART construction and, as a result, can be studied from a similar point of view. In Section 4.3.6 we
discuss the MPART and BPART constructions as well as related work.

4.3.1 Input Parameters for Bayesian Network Generation Algorithms

Many parameters might be varied when randomly generating Bayesian networks. The following parameters,
which cover both topological and distributional issues and whose impact on inferential hardness for tree
clustering is further discussed in Section 5, correspond to the input parameters of the BPART andMPART
algorithms presented later in this section:

• Number of root nodes V in BN: The range of this integer is 1 to ∞; the default value is 30. For the
special case of SAT-like BNs (formally defined in Section 4.3.2), root nodes correspond to variables in
conjunctive normal form (CNF) formulas.

• Number of non-root nodes C in BN: The range of this integer is 0 to ∞; the default value is 90.
For SAT-like BNs (Section 4.3.2), non-root nodes are leaf nodes and correspond to clauses in CNF
formulas.

• Conditional probability table (CPT) type Q and F for BN root and non-root nodes respectively: The
choices are deterministic (or, and, and xor), uniform, and random; the default value for root nodes
is uniform while it is or for non-root nodes. Section 5.6 contains further discussion of CPTs. For
experimentation in this article, or non-root CPTs and uniform root CPTs are employed except in
Section 6.5 where all CPTs are random.

• Child-regularity R of BN: The choices are Class B child-irregular (R = false) or Class A child-regular
(R = true). The default value is child-irregular, or R = false. Four classes Class A, Class B, Class C,
and Class D of BNs of varying regularity have been identified; in this article we consider parent-regular
BNs in detail. Section 5.4 further analyzes the child-regular case R = true; Section 6.4 presents
experimental results for R = true, the remaining experiments in Section 6 focus on the child-irregular
case and use R = false.

• The number of states for a node X in the BN, S = |ΩX |. The range of this integer is 1 to ∞; the
default value is S = 2 (boolean nodes). For boolean nodes, the states may without loss of generality
be called 0 and 1 or false and true respectively. Experiments in Section 6 are restricted to S = 2.

• The in-degree or number of parents P for each non-root node X in the BN: Given our focus on parent-
regular BNs, the number of parents P for each non-root node X is a parameter: P = i(X) = |ΠX |.
The range of this integer is 1 ≤ P ≤ V ; the default value is P = 3. Experiments in Section 6 use P = 3
except in Section 6.5 where P = 2 is used.

9

BPART(Q,F, V,C,S,R, P)
Input: Q conditional probability table (CPT) type, root nodes

F CPT type, non-root nodes
V number of “variables” (root nodes)
C number of “clauses” (leaf or non-root nodes)
S number of states per node
R create regular BN - true or false
P number of parents of clauses (non-root nodes)

Output: β Bayesian network
begin

β ← C�����BN()
A��L����(β, V, 0, S, false) {First, add layer of root nodes - V variables}
A��L����(β,C, P, S,R) {Second, add layer of child nodes - C clauses}
for i← 1 to V +C

node← G��N���(β, i)
if R���N���(node) then
S��D
!��
"��
��(node, S, Q) {Set CPT of root node}

then
S��D
!��
"��
��(node, S, F) {Set CPT of non-root node}

end
end
return β

end

Figure 2: The BPART algorithm for constructing synthetic, bipartite BNs. The input parameters Q, F, V,
C, S, R and P are used to create different variants of BPART networks. The BPART algorithm creates
classical, irregular SAT-like BNs when it is invoked with the paramenters Q = uniform, F = or, S = 2, R
= false, and P = 2; in other words as follows: BPART(uniform, or, V, C, 2, false, 2).

In the following we will always assume that the constraints for V , C, Q, F , R, S, and P as presented
above are all satisfied. As an example, the default values V = 30, C = 90, Q = uniform, F = or, R = false,
S = 2, and P = 3 make up a valid set of input parameters. These default values give a specific signature
for, say, the BPART algorithm, namely BPART(uniform, or, 30, 90, 2, false, 3).

The following quantities can easily be derived from the input parameters presented above:

• The total number of BN nodes is N = C + V .

• From V and C the C/V -ratio can be obtained: The range is 0 to∞; the default value is C/V = 3. Since
V ≥ 1, the C/V -ratio is always well-defined. See Section 5.2 for further discussions of the C/V -ratio;
experiments in Section 6 use C/V -ratios varying from C/V = 0.75 to C/V = 3.4.

• Given C and P , the total number of BN edges is: E = C × P , giving E/V = C × P/V . Since V ≥ 1,
the E/V -ratio is always well-defined. The E/V -ratio generalizes the C/V -ratio; we generally fix P and
use C/V -ratio in this article but E/V shows up in analytical results in Section 5.4.2.

To be consistent with the existing research literature on randomly generating problem instances in the
areas of satisfiability and constraint satisfaction, we use upper-case V to denote the number of root nodes
and upper-case C to denote the number of non-root nodes in a BN. Neither V nor C are nodes or random
variables in a Bayesian network, even though upper-case letters are also used to represent these concepts.

4.3.2 The BPART Network Generation Algorithm: A Synthetic Bipartite Construction

For many NP-hard problems, simply generating random instances in an undiscriminating fashion has some-
times resulted in fairly easy problem instances [4,11,25]. This problem has been addressed in the context of

10

Function name Description
A��(X,X) Adds node X to the set of nodes X; sets X ← {X} ∪ X.
A��P�����(X,Y) If possible, adds Y to ΠX and returns true, else returns false.
C���!�F�#�!�C�
�����(Y) Randomly chooses and returns appropriate node among nodes Y .
C�����BN() Returns a new, empty BN.
C�����N���(β) Returns a newly created node in BN β.
G��L��$N���!(β) Returns nodes without any children in BN β.
G��N���(β, i) Returns the i-th node in the BN β, assuming some node ordering.
G��N��"��O$C�
�����(X) Returns the number of children for BN node X.
G��N��"��O$N���!(X) Returns the number of BN nodes in the set of nodes X.
R�����I��(L,H) Returns, uniformly at random, a natural number in the interval [L,H].
R���N���(X) Returns true if X is a root node, else returns false.
S��D
!��
"��
��(X,S, F) Sets distribution of BN node X, with S states, to CPT of type F .
S��N��"��O$S����!(X,S) Creates S states in the input BN node X.

Table 2: Algorithms used by the Bayesian network construction algorithms. Possible values of the parameter
F in S��D
!��
"��
�� and details of C���!�F�#�!�C�
����� are discussed in the text.

satisfiability, in the seminal work of Mitchell, Selman, and Levesque [55], where it was shown how to generate
hard instances for 3SAT. Here we show how these ideas can be generalized and used to generate, as it turns
out, hard instances for belief revision and belief updating when using tree clustering. In this section we
present our approach to randomly generating bipartite BNs of varying hardness.

Figure 2 presents our BPART construction algorithm which generates SAT-like Bayesian networks as a
special case. When BPART is invoked using the following signature, it creates SAT-like BNs.

Definition 14 (SAT-like BN) Let β ← BPART(uniform, or, V, C, 2, false, P). The BN β is SAT-like.

The BPART algorithm can also construct more general BNs as reflected in the following definition.

Definition 15 (BPART BNs) The set of all BNs generated by BPART is defined as UBPART = {β | β
←BPART(Q, F , V , C, S, R, P)}. The set of regular and irregular BPART BNs are respectively denoted
UrBPART = {β | β ← BPART(Q, F , V , C, S, true, P)} and U iBPART = {β | β ←BPART(Q, F , V , C,
S, false, P)}.

Building on an existing construction [14,60], the basic idea is to generalize from a conjunctive normal form
(CNF) formula and generate a Bayesian network for which an MPE corresponds to a satisfying assignment
of the formula. For a SAT-like BN, given a 3CNF formula f =

∧m
i=1Ci with clauses Ci = Xi1 ∨Xi2 ∨Xi3 ,

one can construct a bipartite Bayesian network, in which one layer of nodes (the root nodes X) corresponds
to the variables and a second layer (the leaf nodes C) corresponds to the clauses. A variable Xj ∈X has an
edge directed toward Ci ∈ C iff Xj occurs in the clause Ci. Clause nodes are clamped during inference. The
conditional probability tables are set so that Pr(f = 1) > 0 iff the assignment to the Xj ’s satisfies the 3CNF
formula. It is easy to see that this happens if for all i, the conditional probability table associated with the
node Ci simulates an or gate of three inputs. To generate a BN that corresponds to a non-monotone CNF,
the CPTs need to be generalized accordingly in a straight forward way. It is easy to verify that an MPE x∗

– an assignment of values to the Xj ’s – has a positive probability iff it satisfies the corresponding 3CNF
formula [14,60]. There may be many satisfying assignments, all with the same probability, making them all
MPEs.

There are several ways to generate random BNs corresponding to CNF formulas. Our BPART approach,
presented in Figure 2, is based on the following policy: work with V variables and C clauses; generate the
clauses by selecting variables uniformly into clauses and negate each variable with probability p = 0.5
[55]. Subroutines used by BPART include A��L���� (see Figure 3), C���!�F�#�!�C�
�����, and
S��D
!��
"��
�� (see Table 2). Turning to BPART in Figure 2, C�����BN first creates a new, empty
BN β. A��L����(β, V, 0, S, false) then adds to β a layer of V root nodes, where each root node has S
states. Next, A��L����(β,C, P, S,R) adds to β the C non-root (or leaf) nodes. Each leaf node has P

11

A��L����(β,M,P, S,R)
Input: β BN to which new layer is added

M number of new nodes to create in the new layer
P number of parent nodes to assign to a new node
S number of states per new node
R true if regular BN layer is to be created, else false

Output: β Bayesian network with layer of nodes added
begin

parents← G��L��$N���!(β)
for i← 1 to M

Xi ← C�����N���(β)
S��N��"��O$S����!(Xi, S)
c← 0
while c < P {The new node Xi is given parents}

if not R then {The irregular case R = false}
j ← R�����I��(1,G��N��"��O$N���!(parents))
parent← parents[j]

else {The regular case R = true}
parent← C���!�F�#�!�C�
�����(parents) {Pick parent with fewest children}

end
success← A��P�����(Xi, parent) {false if parent among Xi’s parents already}
if success then c ← c+ 1 end

end
end
return β

end

Figure 3: The functionA��L���� adds a layer consisting ofM nodes to the Bayesian network β. A��L����
is invoked by BPART.

parents, chosen among the V root nodes. The nature of a leaf node’s parent selection process, which takes
place in A��L����, is controlled by the regularity parameter R ∈ {true, false}. Figure 3 presents how a
layer in the BPART construction is added by the A��L���� procedure. A��L����, which returns the BN
β with a new layer of M nodes added to it, works differently for the regular (R = true) and the irregular
(R = false) cases as discussed further in Section 4.3.3 and Section 4.3.4 respectively.

The CPTs of all nodes are constructed in the top level of BPART (Figure 2). Non-root node CPTs
are determined by the input parameter F , with F ∈ {or, and, xor, uniform, random}. Similarly, root node
CPTs are determined by Q ∈ {or, and, xor, uniform, random}. In a deterministic CPT (where CPTs are
or, and, or xor), all entries are either 0 or 1. In a uniform CPT of a node X with |ΩX | = S states, the
probability mass for a node state for a given parent instantiation is 1/S. In a random CPT, the probabilities
are first picked from a uniform random U(0, 1) distribution, and then normalized to make sure that the
conditional probabilities for a given parent instantiation sum to 1. These types cover the CPTs that are
required to provide an exact mapping from SAT problems to corresponding BNs as well as idealizations of
CPTs that might occur in some applications. In Section 5.6, we discuss the relationship between these CPTs
and hardness for inference.

There are two related but slightly different perspectives on BPART’s signature. The first perspective
is to regard it as a parametrized probability distribution B over BNs – as in B ∼ BPART(uniform, or,
30, 90, 2, false, 3). The second perspective is to regard the signature as an assignment that generates one
sample β from the probability distribution B: The assignment β ← BPART(uniform, or, 30, 90, 2, false,
3) will, under reasonable assumptions regarding the periodicity of the pseudo-random number generator,
create a different BN β each time BPART is invoked. In general, the former perspective is taken in this
section as well as in Section 5, while the latter perspective is taken in the experimental part of the article,
Section 6, where we sample from B.

12

The BPART and MPART construction algorithms presented in this section can construct irregular or
regular BNs. The setting R = true gives a regular BN, while R = false gives an irregular BN. We now
discuss these two cases separately.

4.3.3 The BPART Regular Case: R = true

In the A��L���� procedure, if the new layer of nodes is to be regular (so R = true), the C���!�-
F�#�!�C�
����� procedure is invoked as shown in Figure 3. C���!�F�#�!�C�
����� selects a node
X among its input nodes Y such that no other input node has fewer children. By doing this, the algorithm
ensures that the parent layer is child-regular or “close to” child-regular. More formally, it is ensured that
the BN has an underlying relaxed Class A graph, as defined below.

We now introduce concepts closely related to Definition 11 and Definition 12, in order to make the notion
of regularity more widely applicable without losing the essence of regularity.

Definition 16 (Relaxed Class A directed graph) Consider a directed graph G with V non-leaf nodes
and E edges. If any non-leaf node Xi where i ∈ {1, . . . , V } has o(Xi) =

⌈
E
V

⌉
or o(Xi) =

⌊
E
V

⌋
children, then

the notation o(Xi) ≈ E
V is used and we say that G is relaxed child-regular. If a directed graph G is relaxed

child-regular and parent-regular, G is a relaxed Class A directed graph. The set of relaxed Class A graphs is
UA∗ ; the set of bipartite relaxed Class A graphs is BA∗ := UA∗ ∩ B.

The parameter value R = true controls the number of children (the out-degree) of BPART root nodes
as presented in the following theorem and corollary.

Theorem 17 Suppose the BPART algorithm is called with R = true. If F edges have been distributed
during the BN construction process of BPART, then o(X) ≈ F

V for any root node X.

Proof. Suppose it were not the case. This means that there exists at least one root node X where |ΨX |
>
⌈
F
V

⌉
or |ΨX | <

⌊
F
V

⌋
. Consider the case |ΨX | >

⌈
F
V

⌉
. This means that there exists at least one root node

Y with
⌊
F
V

⌋
(or fewer) children. Assume, for the purpose of contradiction, that all root nodes excluding X

have
⌈
F
V

⌉
children. Since

⌈
F
V

⌉
≥ F

V , the number of children (edges) for these (V − 1) root nodes is

(V − 1)

⌈
F

V

⌉
≥ (V − 1)

F

V
= F − F

V
.

Since the number of children for X is |ΨX |, the total number of edges in the BN is F − F
V + |ΨX |, which

is not possible since |ΨX | >
⌈
F
V

⌉
≥ F

V and there is a contradiction. Consequently, there exists at least

one root node Y with
⌊
F
V

⌋
edges. However, this fact contradicts how C���!�F�#�!�C�
����� operates.

C���!�F�#�!�C�
����� always picks, for a leaf node, a parent with fewest children. However, the fact
that X now has |ΨX | >

⌈
F
V

⌉
implies that at some earlier stage X was picked by C���!�F�#�!�C�
�����

while having
⌈
F
V

⌉
children. At the same time, there must have been a node Y with |ΨY | ≤

⌊
F
V

⌋
, and so

C���!�F�#�!�C�
����� should have chosen Y . This is a contradiction. The proof for the case |ΨX | <⌈
F
V

⌉
is similar.

Using Theorem 17, we formally characterize the output of the BPART algorithm in Figure 2.

Corollary 18 With input parameter R = true, the BPART algorithm creates bipartite relaxed Class A
BNs: UrBPART ⊂ BA∗ .

Proof. Use F = CP in Theorem 17 and apply Definition 16.
Unless otherwise noted, we do not distinguish between relaxed Class A BNs and Class A BNs in the

following, and denote both as Class A BNs. In particular, we shall say that BPART, given input parameter
R = true, creates Class A BNs even though this is true, strictly speaking according to Definition 11, only
in the special case where

⌈
CP
V

⌉
=
⌊
CP
V

⌋
(see Corollary 18). The notion of regularity and its impact on

inference hardness is further discussed in Section 5.4, and we turn now to the irregular case.

13

4.3.4 The BPART Irregular Case: R = false

If R = false, parent nodes are chosen uniformly at random without replacement in the A��L���� procedure
(see Figure 3). It is easy to show that bipartite Class B BNs are generated.

Theorem 19 If R = false, the BPART algorithm creates bipartite Class B BNs: U iBPART ⊂ BB.

In any BN, the parents of a non-root node must be distinct. Consequently, for a given BPART leaf node,
A��L���� selects among the |V | = V root nodes without replacement and we obtain the following.

Theorem 20 (Exact child distribution) Consider a BN with root nodes V and leaf nodes C created
using BPART with input parameter R = false. For any X ∈ V , let the number of children be N = |ΨX |,
and let b be the binomial distribution. It is the case that N ∼ b (C,P/V).

Proof. Using the V root nodes, form
(
V
P

)
distinct super-nodes, where each super-node Wi contains P

different root nodes {Vi,1, ..., Vi,P}, where Vi,j ∈ V for 1 ≤ i ≤
(
V
P

)
and 1 ≤ j ≤ P . Clearly, BPART

performs C Bernoulli trials among these
(
V
P

)
super-nodes. One Bernoulli trial is, for an arbitrary node X ∈

V , considered a success if X is an element of the chosen super-node. There are
(
V−1
P−1

)
super-nodes in which

X is an element. Consequently, the probability of Bernoulli trial success for X is

p =

(
V−1
P−1

)

(
V
P

) =
P

V
,

and since there are C trials we obtain a binomial distribution b(C,P/V).
In the following theorem we introduce a simplifying assumption, further justified below, that parent

selection in A��L���� is made with replacement even though we assumed differently in Theorem 20.

Theorem 21 (Approximate child distribution) Consider a BN with root nodes V and leaf nodes C
created using BPART with R = false. As an approximation, suppose, for any Y ∈ C, that each of Y ’s
P parents is picked independently and uniformly at random among V . For any X ∈ V , let the number of
children be N = |ΨX |, and let b be the binomial distribution. It is the case that N ∼ b (CP, 1/V).

Proof. Consider a BN β with root nodes V created using the BPART algorithm with input R = false.
In A��L����, which is invoked by the BPART algorithm, the i-th leaf node Yi ∈ C selects P parent
nodes. As an approximation, assume that each parent is picked independently. Now consider one particular
root node Xk ∈ V . Call it a success if, for the selection of the j-th parent by the i-th leaf node Yi, Xk
gets picked as a parent node, else call it a failure. Let Ii,j be an indicator random variable for this trial.
By assumption, each selection of a root node is an independent Bernoulli trial with probability of success
p = 1/V , and we obtain a sequence of Bernoulli random variables I1,1, . . ., I1,P , . . ., Ii,1, . . ., Ii,P , . . ., IC,1,
. . ., IC,P . The number of times that Xk is picked is a random variable N =

∑C
i=1

∑P
j=1 Ii,j . Clearly, N has a

binomial distribution b (n, p) with n = CP trials and probability of success p = 1/V .
The approximating assumption of independence in Theorem 21 is justified as follows. As V → ∞, the

random parent selection process in A��L���� approaches drawing independently with replacement, since
the probability of picking the same root node twice or more tends to zero.

Having introduced and analyzed the BPART construction, we return to a discussion of Definition 11
and the classes UCI , UCR , and UCN . As an example, suppose for β ∈ U iBPART that each child node has three
parents. Clearly, β ∈ UCI and typically β ∈ UCN also. We say “typically” because it could happen that
parents are randomly picked such that the graph ends up being child-regular “by chance”, or β ∈ UCR . As
an example, each root node in β could end up with, say, exactly six children, assuming there are twice as
many leaf nodes as root nodes. However, as we will see in Theorem 22 and Example 23, the probability of
β ∈ UCR is extremely small for β ∈ U iBPART when β is generated using parameter values for P , V , and C of
the order of magnitude used in the experimental part of this article.

14

Theorem 22 Consider a BN β ∈ UCI with root nodes V and leaf nodes C created using BPART with
input parameter R = false. Suppose for any Y ∈ C that each of Y ’s P parents is picked independently and
uniformly at random from V . Also assume that k := CP

V is an integer. It is the case that

Pr (β ∈ UCR) =
CP !

(
CP
V !
)V

(
1

V

)CP
. (7)

Proof. The desired joint distribution over root nodes V is clearly multinomial, giving

Pr (β ∈ UCR) = Pr (N1 = k, . . . , NV = k)

=
n!

(k!)
V
× pn.

Using Theorem 21 we have p = 1/V and n = CP ; therefore (7) follows.
Unfortunately, it is not easy to see what happens when CP →∞ in (7). However, by putting n := CP

and using Stirling’s formula to approximate the factorial function in (7), we get

Pr (β ∈ UCR) ≈
√
2πnnne−n

(√
2π nV

)V (n
V

)n
e−n

(
1

V

)n

=

√
V V

(2πn)V−1
, (8)

from which it is easy to see that limn→∞Pr (β ∈ UCR) = 0. In words, when a child-irregular BPART
BN β ∈ UCI is generated, β is also child-non-regular with “high” probability Pr (β ∈ UCN) = 1 − ε, where
ε := Pr (β ∈ UCR) is characterized by (7) or (8). Here is an example.

Example 23 Consider a BPART BN β ∈ UCI constructed using parameters R = false, P = 3, V = 30,
and C = 90. Using Theorem 22 we obtain Pr (β ∈ UCR) ≈ 1. 61 × 10−25, a very small probability indeed.
Using (8) gives the approximation Pr (β ∈ UCR) ≈ 2. 130× 10−25.

We now turn to a related but different question. How can the minimum out-degrees of root nodes in an
irregular BPART BN β be characterized? This question is answered in Theorem 25 below, using the fact
that parents of a leaf node are picked at random in the BPART algorithm. Before stating the result, we
formally define minimal root node out-degree, which is a random variable M.

Definition 24 (Minimum out-degree) Let X = {X1, . . ., Xn} be a set of n BN nodes with randomly
distributed children, and let Ni ∼ o(Xi). The minimum out-degree random variable M is defined as M =
min(N1, . . .,Nn) and abbreviated as M = min(X).

In the following, Mi is used for the irregular case (R = false), Mr for the regular case (R = true).

Theorem 25 (Expected minimum out-degree in BPART) Consider a BN β with root nodes V and
leaf nodes C created using BPART with R = false. Suppose, for any Cj ∈ C, that Cj’s P parents are
picked independently and uniformly at random among V . Let Mi= min (V). The expectation E(Mi) is

E(Mi) =

⌊CPV ⌋∑

j=1

((
1−B(j − 1;CP,

1

V
)

)V)

, (9)

where B(k;n, p) is the cumulative binomial distribution function Pr (X ≤k), where X ∼b(n, p).

Proof. The probability that the value of some Ni is k or greater is

Pr(Ni≥k) = 1− Pr(Ni<k) = 1−B(k − 1;n, p), (10)

15

where B is the cumulative binomial distribution. (Recall that Theorem 21 uses the binomial distribution
when R = false.) Considering all V root nodes in β, for the minimum to be k, all V nodes need to
be k or greater: Pr

(
Mi≥k

)
= Pr (N1≥k, N2≥k, . . . , NV≥k). Since, as an approximation, root nodes are

assumed to be picked independently and uniformly at random, there is independence between N1, . . . ,NV .
By introducing N = N1 = . . . = NV as well as (10) we obtain

Pr
(
Mi≥k

)
=

V∏

i=1

Pr (Ni≥k)

= (1− Pr(N ≤ k − 1))V

= (1−B(k − 1;n, p))V . (11)

Given a random variable Mi with possible values {0, 1, . . . ,m}, the tail sum formula for expectation is

E(Mi)=
m∑

j=1

Pr
(
Mi≥j

)
(12)

which by combining (11) and (12) yields

E(Mi) =
m∑

j=1

(
(1−B(j − 1;n, p))V

)
.

By substituting in m =
⌊
CP
V

⌋
, n = CP and p = 1

V we obtain (9) as desired.
The following example illustrates Theorem 25 using parameter values from experiments in this article.

Example 26 (Expected minimum out-degree in BPART) Consider a BPART network constructed
using input parameters C = 60, V = 30, P = 3, and R = false. Using Theorem 25, we obtain E(Mi) ≈ 1.72.
If instead we use C = 102, while the other parameters stay the same, we obtain E(Mi) ≈ 4.39.

While Equation 9 can be used to compute values for E(Mi) as shown in Example 26, it is unfortunately
not obvious how E(Mi) changes when the C/V -ratio changes. However, based on Theorem 21 we may use
the binomial distribution b (CP, 1/V) with Ê(Mi, a) = µ−aσ as an approximation to E(Mi), where a is the
number of standard deviations. A more explicit form is thus obtained:

Ê(Mi, a) = µ− aσ =
CP

V
− a

√
CP (V − 1)

V 2
=
CP − a

√
CP (V − 1)

V
. (13)

The impact of an increasing C/V -ratio can now be observed from Equation 13: For a fixed number of
standard deviations a, when the C/V -ratio increases due to an increase in C, it is clear that Ê(Mi, a) in
Equation 13 will increase as well. Table 3 provides, by means of example, some insight into the difference
between the irregular and regular cases. The difference in the expectations of the minimal degrees, E(Mr)
versus E(Mi), is quite dramatic. Table 3 also compares Equation 13 with Equation 9 for V = 30, P = 3,
C varying from 60 to 102, and a = 1 or a = 2 standard deviations. Here, E(Mi) is bounded as follows:
Ê(Mi, 2) < E(Mi) < Ê(Mi, 1); Ê(Mi, 1) provides a conservative upper bound.

4.3.5 The MPART Network Generation Algorithm: A Synthetic Multipartite Construction

Are the patterns of hard and easy restricted to the BPART construction? If not, then what is construction-
specific, and what is general across constructions? In order to explore these questions, we investigated
a different but related algorithm for generating random Bayesian networks, the MPART construction.
MPART is closely related to an approach of Kask and Dechter [41]. The procedure they describe can be
viewed as follows. Choose these three parameters: N - the number of nodes in the network; V - the number
of root nodes and P - the number of parents of a non-root node. Construct a network as follows: Index the
nodes from 1 to N , and iterate from the C-th node XC. At the i-th step, process the i-th node Xi, with
1 ≤ i ≤ C, and pick, uniformly at random, P parents among the nodes indexed from i + 1 to N . Repeat
until all C non-root nodes {X1, . . ., XC} have been assigned parents.

16

C/V 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
Class A: E(Mr) 6 6 7 7 8 9 9 10

Class B: Ê(Mi, 1) 3.59 4.07 4.56 5.05 5.55 6.05 6.55 7.06
Class B: E(Mi) 1.72 2.07 2.44 2.81 3.20 3.59 3.99 4.39

Class B: Ê(Mi, 2) 1.18 1.55 1.92 2.31 2.70 3.10 3.51 3.92

Table 3: These results are relevant for BPART BNs with V = 30, P = 3, and C varying from 60 to 102. The
table shows the expectation of minimum out-degrees E(Mr) in Class A (regular) BNs and E(Mi) in Class B
(irregular) BNs. For the irregular case, the approximation Ê(Mi, b) = µ− aσ for a = 1 and a = 2 standard
deviations is also displayed.

X1 X2 X3 X4

C4

C1

C6

C7

C5

C2 C3

Pr(X1)

0 0.5

1 0.5

Pr(X4)

0 0.5

1 0.5

Pr (C 7 | C 1 ,X 4)

C 1 : 0 1

X 4 : 0 1 0 1

0 0 .3803 0.4761 0.0614 0.8648

1 0 .6197 0.5239 0.9386 0.1352

X1 X2 X3 X4

C4

C1

C6

C7

C5

C2 C3

Pr(X1)

0 0.5

1 0.5

Pr(X4)

0 0.5

1 0.5

Pr (C 7 | C 1 ,X 4)

C 1 : 0 1

X 4 : 0 1 0 1

0 0 .3803 0.4761 0.0614 0.8648

1 0 .6197 0.5239 0.9386 0.1352

Figure 4: Example Bayesian network generated by the MPART algorithm. This BN has four root nodes
{X1, ...,X4} and seven non-root nodes {C1, ..., C7}. Among the non-root nodes, only C3 could have appeared
in a BPART network; the remaining non-root nodes either have at least one non-root child or parent. For
instance, C1 has non-root C4 as parent and C5 as child.

Example 27 An example MPART BN is shown in Figure 4.

The MPART and BPART constructions are compared in Figure 5. The essential difference is that
MPART BNs allow non-root nodes to have other non-root nodes as parents, while this is not allowed in
BPART networks. Essentially, the MPART algorithm is similar to the BPART algorithm except a slight
variation on BPART’s A��L���� algorithm (A��L���� is presented in Figure 3). Instead of BPART’s
A��L���� statement “if success then c ← c+ 1”, MPART sequentially uses the statements “if success
then c ← c + 1” and “A��(node, parents)”. The signature of MPART mirrors BPART’s signature as
presented in Figure 2 and is MPART(Q, F , V , C, S , R, P).

Definition 28 (MPART BNs) The set of all BNs generated by MPART is UMPART = {β | β←MPART(Q,
F , V , C, S, R, P)}. The sets of regular and irregular MPART BNs are respectively defined as UrMPART =
{β | β ←MPART(Q, F , V , C, S, true, P)} and U iMPART = {β | β ←MPART(Q, F , V , C, S, false, P)}.

This multipartite construction algorithm typically creates BNs with a tree-like topology. However, if the
number of non-root nodes C = N − V is much smaller than V , the graph may be bipartite or “close to”
bipartite. To reflect two different types of MPART BNs, we introduce the following terminology.

Definition 29 Let an MPART BN β have root nodes V and non-root nodes X = {X1, . . ., XC} with
C = |C|. We define the bipartite subset of U iMPART as BiMPART = B ∩ U iMPART = {β | ΠX1

⊆ V , . . .,
ΠXC

⊆ V } ∩ U iMPART.

Given this terminology, we show in the following theorems that the MPART construction is a general-
ization of the BPART construction in the case of irregular MPART BNs.

Theorem 30 Irregular BPART BNs are a subset of irregular MPART BNs: U iBPART ⊂ U iMPART.

17

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
MPART construction

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
BPART construction

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
MPART construction

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
MPART construction

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
BPART construction

X1 X2 Xi-1 Xi Xi+1
XC XC+1 XN

current node candidate parent nodes

root nodes
BPART construction

Figure 5: Generation of Bayesian networks using the BPART and MPART constructions. Edges between
nodes are, for simplicity, omitted. In both constructions, nodes are treated sequentially. Let Xi be the
BN node currently being processed. For Xi, a fixed number of P parent nodes are randomly selected.
For BPART, parent nodes for Xi are chosen among the root nodes {XC+1, ...,XN}, while they are chosen
among the nodes {Xi+1, ...,XN} forMPART. TheMPART construction is a generalization of the BPART
construction: When it so happens that all parent nodes for an MPART BN are picked from the root nodes,
the BN could also have been generated by BPART.

Proof. First, we show that if β ∈ U iBPART then β ∈ U iMPART, and thus that U iBPART ⊆ U iMPART.
Assume, for purposes of contradiction, that β ∈ U iBPART and β /∈ U iMPART. For this to happen, there must
exist a node X in β with ΠX constructed by BPART such that ΠX can not be constructed by MPART.
However, this is not possible, since the candidate set for ΠX in BPART is a subset of that in MPART.
This follows from the structure of the MPART construction algorithm, and in particular the statement
A��(node, parents) which adds “node” to the candidate set “parents”. This statement in the MPART
algorithm is lacking in the BPART algorithm. Second, we exhibit a β ∈ U iMPART such that β /∈ U iBPART,
and therefore U iBPART � U iMPART. Consider the three-node chain β with nodes {X1,X2,X3}, and edges
{(X1,X2), (X2,X3)}. Clearly, β /∈ U iBPART since β is not bipartite. However, β ∈ U iMPART since β may be
constructed by the MPART construction algorithm using the signature MPART(Q, F, V,C,S,R, P) with
V = 1 and C = 2.

Theorem 31 Irregular BPART BNs are the same as irregular bipartite MPART BNs: U iBPART = BiMPART.

Proof. We need to show that (i) U iBPART ⊆ BiMPART and (ii) U iBPART ⊇ BiMPART. From the proof of
Theorem 30 we have U iBPART ⊂ U iMPART, which gives (i) as follows:

U iBPART ∩ B ⊆ U iMPART ∩ B
U iBPART ⊆ BiMPART .

For (ii), consider a BN β ∈ BiMPART. Since β is bipartite, the MPART statement A��(node, parents) had
no effect on the structure of β, and could have been left out. In that case we have, by construction, the
BPART algorithm and clearly β ∈ U iBPART.

Finally, we provide the probability that a randomly generated irregular MPART BN will be bipartite,
and in particular an irregular BPART BN.

18

Theorem 32 Let β ∈ U iMPART. For P ≥ 1 and C ≥ 1, the probability of the event β ∈ BiMPART is

Pr
(
β ∈ BiMPART

)
=

C∏

i=1

P−1∏

j=0

(
V − j

C + V − i− j

)
.

Proof. Let C be the set of C non-root nodes and let Xi ∈ C be the node in β currently processed by the
MPART algorithm. For Xi, parents are picked among {Xi+1, . . ., XC} ∪ {XC+1, . . ., XN}; the non-root
nodes already processed and all root nodes. Clearly, Xi’s parents ΠXi

must all be picked among the root
nodes V = {XC+1, . . . ,XN} for the event β ∈ BiMPART to take place. For MPART’s first pick of a parent
Y for Xi there are k = C − i non-root nodes {Xi+1, . . . ,XC} to avoid. For R = false, MPART’s selection
distribution is uniform, giving a probability of success for Xi of Pr (Y ∈ V) = V

k+V . The nodes in ΠXi
need

to be distinct but are otherwise picked independently and the multiplication principle can be applied, giving

Pr (ΠXi
⊆ V) =

(
V

k + V

)
×
(

V − 1

k + V − 1

)
× · · · ×

(
V − P + 1

k + V − P + 1

)
=
P−1∏

j=0

(
V − j

k + V − j

)
. (14)

For β ∈ BiMPART to occur, a condition similar to (14) needs to hold for all C non-root nodes; by Definition
29 we get Pr

(
β ∈ BiMPART

)
= Pr (ΠX1

⊆ V , . . . , ΠXC
⊆ V). Since the selection of parents for Xi is inde-

pendent of the selection of parents for Xj , for i �= j, the multiplication principle applies again and we obtain
for non-root nodes {X1, . . . ,XC} in β

Pr (ΠX1
⊆ V , . . . , ΠXC

⊆ V) =
C∏

i=1

Pr (ΠXi
⊆ V) . (15)

Substituting (14) into (15) and using the fact that k = C − i gives

Pr
(
β ∈ BiMPART

)
=

C∏

i=1

Pr (ΠXi
⊆ V) =

C∏

i=1

P−1∏

j=0

(
V − j

k + V − j

)
=

C∏

i=1

P−1∏

j=0

(
V − j

C + V − i− j

)
.

Since P ≥ 1 and C ≥ 1 by assumption, 0 ≤ Pr
(
β ∈ BiMPART

)
≤ 1 and is thus a well-defined probability.

A reader might ask how our MPART algorithm relates to the work of Kask and Dechter [41]. MPART
is based on their approach and the topologies of the BNs generated are quite similar. There are some minor
differences, including some details in the algorithms; the CPTs generated; and the clamping of evidence.
Our main contribution is not MPART itself but rather the following: The observation that BPART is a
special case of MPART as characterized in Theorem 30, Theorem 31, and Theorem 32; the fact that C/V -
ratio is key also for MPART; and finally the fact that MPART BNs generated using C/V ≤ 0.75 turn out
to be relatively easy for tree clustering as further investigated in Section 6.5. The reason for our interest in
C/V ≤ 0.75 is that this inequality holds for the BNs investigated by Kask and Dechter [41].

4.3.6 Discussion and Related Work

The BPART construction is, as already mentioned, a generalization of the random generation of problem
instances for the satisfiability problem (SAT) [55]. Satisfiability might seem like a limited problem to consider
since (i) it is a decision problem rather than an optimization problem like the MPE problem (see Definition
9) and (ii) it gives a particular bipartite BN topology. Before discussing these possible concerns, we note
that the BPART algorithm can generate Bayesian networks that are not SAT-like, using parameter settings
such as F = random or S > 2.

Concerning (i), even though satisfiability is obviously a decision problem, decision problems are special
cases of optimization problems. For instance, it has proven fruitful to view the SAT decision problem as the
MAXSAT optimization problem [15, 30]. MAXSAT is an optimization problem where one maximizes the
number of satisfied clauses. So even though satisfiability is a decision problem, there is a strong connection
to an optimization problem.

Concerning (ii), we argue that the bipartite topology is interesting in its own right and inference algo-
rithms have been specifically designed for bipartite BNs [31]. Important classes of application BNs, including

19

medical diagnosis BNs such as the QMR-DT BN [67] and information theory BNs [27, 28], are essentially
bipartite.3 Bipartite medical BNs typically model diseases and symptoms – diseases are root nodes, symp-
toms are leaf nodes [43, 67]. These BNs may be used to compute an MPE over the disease nodes given
known symptoms. Bipartite information theory BNs are used for coding and decoding in the presence of
noisy transmission [27,28]. Two classes of information theory Bayesian networks are Hamming code BNs and
low density parity code BNs, and for both there is a close relationship to BPART networks in general and
SAT-like BNs in particular. The fact that “traditional” information theory BNs [28] have a fixed number of
children per root node corresponds to a BPART parameter value R = true in Figure 2. A parameter value
R = false gives “modern” Gallager codes [48].

The BPART topology also provides a well-understood stepping stone towards other topologies, and in
particular it is a component in multi-partite BNs. Furthermore, as we detail in the MPART construction
above, one can regard the leaf nodes in a BPART BN as corresponding to the non-root nodes in an arbitrary,
non-bipartite BN such as an MPART BN.

Finally, we note that our approach is independent of and complementary to related research which relies
on Markov chain convergence in order to randomly sample BNs [34, 35]. While the use of a Markov chain
is different from our approach, there is some similarity between their use of heuristic width [35] and our
use of heuristics for clique tree optimization. However, there is an important difference between these two
approaches. While we generate BNs randomly without directly controlling maximal clique size or total clique
tree size, Ide et al. enforce a constraint on heuristic width as part of the random BN generation process [35].
This makes their approach more general but also potentially slower and more difficult to analyze compared
to our approach.

5 Analysis of Hard and Easy Synthetic Networks

This section synthesizes the discussion, in Section 4, of parameters of randomly generated BNs and the
presentation of tree clustering in Section 3. In particular, we discuss how varying some of these BN para-
meters might affect the performance of tree clustering inference. This discussion motivates the experiments
performed in Section 6 and justifies our expectations regarding the effect of varying different parameters.
Section 6 also provides further quantitative details regarding how clique sizes and inference times increase
with the C/V -ratio and when different triangulation heuristics are used.

The rest of this section is organized as follows. In Section 5.1 we relate our focus on the C/V -ratio
to previous research. The following few sections discuss topological issues. In Section 5.2 we identify a
conservative lower bound on clique tree size. Qualitatively, this lower bound gives an easy-hard-harder
pattern, with increasing C/V -ratio, for BN inference using tree clustering. Section 5.3 introduces the
structural concept of only-child BN as well as results used in the following. Section 5.4 focuses on cycle
formation in the moral graphs of Regular Class A BNs. The reason for our analysis of cycles in general and
Hamiltonian cycles in particular is that cycles in the moral graph force tree clustering (including H�	
�) to
add fill-in edges to the moral graph, which again significantly impacts the size of the clique tree and thus
inference time. In Section 5.5, we argue that regular (Class A) BNs should be harder than irregular (Class
B) BNs based on insights regarding cycle formation. The final section, Section 5.6, discusses how the nature
of CPTs can impact tree clustering inference.

5.1 Previous Research and the C/V -ratio

For the problem of solving SAT instances, a phase transition phenomenon has been observed for the prob-
ability of satisfiability [11, 55]. This phase transition phenomenon has been studied by controlling the
ratio C/V between the number of variables V and the number of clauses C in a CNF formula, generating
problem instances, and experimentally observing the resulting probability of satisfiability [55]. Through
extensive experimentation it has been established that for large 3CNF formulas the phase transition occurs
for C/V ≈ 4.25. For smaller instances, the phase transition is at higher C/V values. For example, for
V = 20 the transition is at C/V ≈ 4.55. Interestingly, it has been found that the computational cost of

3The QMR-DT BN is computationally challenging, but is unfortunately not publicly available and is consequently not used
for experimentation here.

20

finding a satisfying instantiation is correlated with the probability of satisfiability [11,55]. For instance, when
using the Davis-Putnam algorithm to search for satisfying assignments, there is an easy-hard-easy pattern
for SAT. The hardest instances are found in the region around the phase transition, the hard region, of the
easy-hard-easy pattern [13,26,55,71].

The nature of the hardness pattern depends on the algorithmic approach investigated, as has been clearly
recognized for SAT [55, our emphasis]. Similar to the results for SAT, there is a need for investigations
of synthetically generated BPART and MPART networks using a BN inference algorithm such as H�	
�.
This is what we do in this section. It should be noted that we are not aiming to establish a phase transition
exactly like the one established for SAT; rather our goal is to develop an approach to systematically generate
BNs of varying and predictable hardness.

5.2 A Lower Bound

In the BPART and MPART constructions, the C/V -ratio is controlled by varying the values of the input
parameters C and V .

Via the construction described in Section 4.3.2 and the discussion in Section 5.1, we hypothesized that the
importance of the C/V -ratio carries over to BPART BNs. Given the way we have generated the SAT-like
networks corresponding to generation of CNF formulas, we have mapped V to be the number of root nodes
in a BN and C to be the number of non-root nodes in the BN. When limiting our attention to SAT-like
BNs, the problem is exactly the same as the SAT problem, so one might on first thought expect very similar
result. However, in previous work the Davis-Putnam algorithm, a recursive splitting approach [30], was
used [55]. The Davis-Putnam algorithm is quite different from tree clustering algorithms including H�	
�.
Consequently, while an easy-hard-easy pattern has been observed for SAT formulas using Davis-Putnam [55],
there is a different pattern for tree clustering.4 Our reasoning, which is summarized below in Theorem 34,
is based on the following definitions.

Definition 33 (Clique tree metrics) Let β′′′ be a clique tree constructed from a BN β by tree clustering.
The total size of cliques containing only root nodes from β is defined as kR

(
β′′′
)
. The total size of cliques

containing a mixture of root nodes and non-root nodes from β is defined as kM
(
β′′′
)
.

Clearly, no cliques contain leaf nodes only, and thus k
(
β′′′
)
= kM

(
β′′′
)
+ kR

(
β′′′
)
. For BPART in

particular there are two types of cliques: Cliques with root nodes only (with total size kR), and cliques with
leaf nodes and root nodes (total size kM). The total size of cliques with root nodes only, kR

(
β′′′
)
, turns out

to be important in the experimental part of this article; we first focus on kM
(
β′′′
)
below.

Theorem 34 (Lower bound) Consider a BN β with C non-root nodes, each with P ≥ 0 parents. Let
S = |ΩX | ≥ 2 for all nodes X in β. Then, for β’s clique tree β′′′, kM

(
β′′′
)
≥ CSP+1.

Proof. Suppose the m mixed node cliques in the clique tree are enumerated from 1 to m. Let the
number of root nodes and non-root nodes in the i-th such clique be denoted V (i) and C(i) respectively,
where V (i) ≥ P and C(i) ≥ 1. Clearly, SC(i)+V (i) ≥ SC(i)+P ≥ C(i)SP+1. The last inequality follows
because it is easy to show, for S ≥ 2, P ≥ 0 and C(i) ≥ 1, that SC(i)+P ≥ C(i)SP+1. The total size is
therefore

kM
(
β′′′
)
=

m∑

i=1

SC(i)+V (i) ≥
m∑

i=1

C(i)SP+1 = SP+1
m∑

i=1

C(i) ≥ CSP+1,

where the last inequality follows because
∑m
i=1C(i) ≥ C.

An informal explanation of this result is as follows: By construction, each non-root node Ci in β has P
parents and each node in β has S states. Recall from Section 3.1 that as a result of moralization, a non-root
node Ci and its parents ΠCi always end up in the same clique. After moralization, a given non-root node
Ci will therefore belong to a clique whose size is at least S

P+1. As stated in Theorem 34, one can as a lower

4For Davis-Putnam, SAT formulas become easier with a very high C/V -ratio, C/V > 4.25, due to the overwhelming
proportion of unsatisfiable instances where the Davis-Putnam procedure encounters inconsistencies and can prune the search
space. Suppose there is an inconsistency for a BN when employing Davis-Putnam. When using tree clustering on the same BN,
this inconsistency is not detected until during the propagation phase, which is where the CPT values come into play.

21

bound argue that this is true for all C non-root nodes, thus the total size of β′ after moralization is at least
CSP+1. Since edges are potentially added but never deleted in subsequent steps of tree clustering, CSP+1

is a lower bound for the total size k(β′′′) of the clique tree β′′′. Clearly, this space complexity lower bound
implies a time complexity lower bound of CSP+1 as well.

Given Theorem 34 and our focus on C/V , how may one make C/V increase? If we hold V constant,
then C needs to be increasing, and consequently CSP+1 increases. Therefore, the H�	
� compilation and
propagation times will typically increase, too. An argument for an easy-hard-harder pattern can therefore be
made based onH�	
�’s moralization step only, and considering all non-root nodes in BNs (including BPART
andMPART BNs). In other words, when considering moralization only, one would for tree clustering expect
an easy-hard-harder pattern with increasing C/V -ratio when V is kept constant and C is increased. This
expectation is confirmed in experiments in Section 6.

5.3 Only-Child BNs

For a subclass of Class A BNs, namely only-child BNs (see Definition 36), we can show Hamiltonicity (see
Theorem 42). In preparation for that result, we introduce a few definitions that apply to BNs in general.
Intuitively, two BN nodes X and Y are q-siblings if they have q parents in common.

Definition 35 (q-siblings) Let q be a non-negative integer. Consider two nodes X and Y in a directed
acyclic graph (BN). If |ΠX∩ ΠY | = q, then X and Y are q-siblings.

Based on the concept of q-siblings, the notion of “only (common) child” is introduced below. Informally,
a node X is an only-child node if its parents ΠX do not have any other children in common.

Definition 36 (Only-child) Let X be the nodes in a directed graph (BN). A node X is an only-child node
if, for all Y ∈ X− {X}, X and Y are k-siblings with k < 2, where k is a non-negative integer. A graph
(BN) is an only-child graph (BN) if all nodes are only-child nodes.

We hypothesize that the notion of only-child provides a good approximation to the BNs constructed by
BPART and MPART in the following sense: When the number of root nodes V is “large”, both BPART
andMPART will “often” construct a node that is an only-child, as long as the number of non-root nodes C is
“not too large” compared to V . Stated differently, a “high” proportion of the children will be only-children,
given “reasonable” assumptions on the number of non-root nodes and root nodes. We believe that these
ideas can be further formalized, and leave this for future work.

The notion of only-child is not, in general, valid in application BNs and we have not built the assumption
into the BPART and MPART algorithms either. However, the notion of only-child paves the way for a
formal analysis based on filtering of clique trees, which we now introduce.

Definition 37 (Filtering) Let β′′′ be an undirected graph
(
X
′′′,E′′′

)
that is a clique tree. The filtering of

clique nodes X′′′using nodes V is defined as X′′′ 〈V 〉 =X′′′ ∩ P (V), where P (V) is the power set of V .

Given a filtered set of nodes, one can construct an induced subgraph (Definition 5) of the clique tree β′′′ as
follows: First, consider the tuple of clique tree nodes and edges

(
X
′′′,E′′′

)
in β′′′, and form Y ′′′ ←X

′′′ 〈V 〉.
Second, form the induced subgraph Z′′′ ← β′′′

[
Y
′′′
]
by using the clique tree nodes Y ′′′. This process, where

we define β′′′ [V] = β′′′
[
X
′′′ 〈V 〉

]
, is illustrated below. For simplicity we say, for example, V1V2C1 rather

than {V1, V2, C1} to represent a clique tree node containing the BN nodes V1, V2, and C1. The difference
between Y ′′′ and β′′′

[
Y
′′′
]
is that the former is a set of nodes while the latter is a graph. In Example 38

the notions of only-child, induced subgraph, and filtering are brought together.

Example 38 (Only-child BN) Figure 6 shows a bipartite only-child BN β as well as the induced sub-
graphs β′ [V], β′′ [V], and β′′′ [V] of β′, β′′, and β′′′ respectively. This is an only-child BN because no leaf
node Ci has more than one parent in common with another leaf node Cj for any i �= j. There is a loop
(V5, V7, V6, V4, V2, V3, V1) in the moral subgraph β

′ [V], which again causes fill-in edges (V5, V6), (V5, V4),
(V1, V4), and (V1, V2) in the triangulated subgraph β

′′ [V] and cliques as shown in the clique subtree β′′′ [V].

22

BPART Class A

Bayesian network

(all nodes)

Moral graph

(root nodes)

Triangulated

moral graph

(root nodes)

Junction tree

(root nodes)

V1 V2 V3 V4

C1 C2 C3 C4 C5 C6 C7

V5 V6 V7

V1

V2

V3

V4

V5

V6

V7

V1

V2

V3

V4

V5

V6

V7

V1V4V5

V1V2V3V1V2V4

V4V5V6

V5V6V7

BPART Class A

Bayesian network

(all nodes)

Moral graph

(root nodes)

Triangulated

moral graph

(root nodes)

Junction tree

(root nodes)

V1V1 V2V2 V3V3 V4V4

C1C1 C2C2 C3C3 C4C4 C5C5 C6C6 C7C7

V5V5 V6V6 V7V7

V1V1

V2V2

V3V3

V4V4

V5V5

V6V6

V7V7

V1V1

V2V2

V3V3

V4V4

V5V5

V6V6

V7V7

V1V4V5

V1V2V3V1V2V3V1V2V4V1V2V4

V4V5V6V4V5V6

V5V6V7V5V6V7

Figure 6: An example of compiling an only-child BPART BN. Only the subgraph induced by the BN root
nodes, V , are shown for the moral graph, the triangulated moral graph, and the junction (or clique) tree.
This is an only-child BN because no leaf node Ci has, for all i �= j, more than one common parent with
another leaf node Cj . For instance, |ΠC1 ∩ΠC2 | = |{V1, V3} ∩ {V2, V3}| = 1.

In Example 38 there is a Hamiltonian cycle in the moral graph for the root nodes, which again causes
four fill-in edges and five cliques in the subgraph of the junction tree induced by the BN root nodes.

The notion of only-child is useful when we analyze how moralization affects the non-leaf nodes in a BN.
In particular, the only-child definition is used in the following theorem.

Theorem 39 (Degree of moralized only-child BNs) Let C be the non-root nodes in a BPART only-
child BN β (Definition 36), and let V be the root nodes. If P = |ΠC | ≥ 2 for all C ∈ C, then any V ∈ V
has degree d(V) = (P − 1)|ΨV | in the subgraph γ′ = β′ [V] of the moralized graph β′ induced by V .

Proof. There are three cases: |ΨV | = 0, |ΨV | = 1, and |ΨV | ≥ 2. For the first two cases, it holds true
for V ∈ V that d(V) = 0 and d(V) = P − 1 respectively and so the formula is correct. We now consider the
case of |ΨV | ≥ 2. Since each C ∈ C has P parents, moralization ensures that each parent V ∈ ΠC has at
most (P − 1) neighbors in the moralized graph β′ due to C. Consider arbitrary Ci, Cj ∈ C such that Ci, Cj
∈ ΨV , where i �= j. By assumption, each C ∈ C is an only-child. Due to the assumed only-child property,
(ΠCi − V) ∩

(
ΠCj − V

)
= ∅ for any V ∈ V . Each of Ci and Cj consequently give (P − 1) neighbors for V

in the graph γ′ = β′ [V] induced by V in the moralized graph β′. This holds for any Ci, Cj ∈ ΨV , giving a
total of d(V) = (P − 1)o(V) = (P − 1)|ΨV |.

An example of applying Theorem 39 follows.

Example 40 (Degree of moralized only-child BNs) Consider Figure 6 again, and in particular the
subgraph γ′ = β′ [V] induced by the BN’s root nodes V = {Vi | 1 ≤ i ≤ 7}. (The second graph from the top
in Figure 6 is γ′.) For all Vi ∈ V , d(Vi) = (P − 1)|ΠC | = 2 as predicted by Theorem 39.

5.4 Regular BNs

In BPART and MPART, setting R = true creates regular BNs. In this section, the focus is on how
regularity impacts cycles in the moralized graph of a BN. Long, undirected cycles (loops) in the moralized

23

graph are one of the main factors causing large maximal clique sizes. Consequently, a key question for tree
clustering is the impact of the moralization and triangulation steps in terms of cycles. We focus on the
longest cycle as well as the extreme case of cycles visiting all nodes exactly once, Hamiltonian cycles.

5.4.1 Regular Class A BNs

The issue of the regularity of the underlying graph of a Bayesian network has received some attention in
information theory [27,28,48]. Gallager’s original codes, which are denoted classical Gallager codes in Table
1, require each root node to have the same number of children and each leaf node to have the same number
of parents. They are therefore of the Class A type [28].

Recently, a compelling argument has been provided for why lifting the Class A regularity constraints may
be beneficial when computing the MPE in BNs for decoding [48]. In particular, when using iterated belief
propagation to compute the MPE given a codeword transmitted over a noisy channel, irregular BNs have
been found to perform better than regular ones [48]. The intuition is that, using iterated belief propagation,
high degree root nodes may tend to get quicker to the “right” setting, given that they need to satisfy more
constraints. This leads to a “wave effect” that helps lower degree root nodes find their “right” setting. For
belief propagation it is therefore beneficial to have a mixture of high-degree and low-degree (“low regularity”)
root nodes in information theory BNs. These observations raise the question of how BN regularity might
impact tree clustering. In the following we provide further insight into this question by considering cycle
formation; some related work exists [29].

5.4.2 Regular Only-Child BNs

We now turn to cycle formation in the moralized graph of only-child BNs. Example 38 and Figure 6 illustrate
the importance of Hamiltonian cycles. The following Hamiltonicity result by Jackson [36] is used below.

Theorem 41 (Hamiltonicity, Jackson) Let G be an undirected graph where all vertices have degree

δ (G) = d (G) = k. If d (G) ≥ n(G)
3 then G is Hamiltonian.

In Theorem 42 we apply Theorem 41 to a BN’s moral graph β′.

Theorem 42 (Hamiltonicity of BPART only-child BN) Consider an only-child BPART BN β con-
structed with R = true, let β′ be the moralized graph of β, and let γ′ = β′ [V] be the subgraph in β′ induced
by the root nodes V of β. If

(P − 1)

⌊
CP

V

⌋
≥ V

3
(16)

then γ′ is Hamiltonian.

Proof. The theorem follows from Theorem 41, Corollary 18, and Theorem 39. Consider the subgraph
γ′ induced by the root nodes V in the moralized graph β′, γ′ = β′ [V]. Since β is an only-child BN it is
known from Theorem 39 that for a root node X ∈ V ′, where γ′ =

(
V
′,E′

)
, d(X) = (P − 1)|ΨX |. Due to

the BPART BN’s regularity, Corollary 18 applies and |ΨX | ≈ CP
V . Consequently, each root node X from

the BN has, in γ′, the degree d(X) = (P − 1)
⌊
CP
V

⌋
or d(X) = (P − 1)

⌈
CP
V

⌉
. For the purposes of this proof

we drop edges for nodes with (P − 1)
⌈
CP
V

⌉
edges, if any, thus constructing γ′′ where all nodes have degree

d (γ′′) = (P − 1)
⌊
C(P−1)

V

⌋
. Since γ′′ is a regular graph, we can apply Theorem 41 with n (γ′) = n (γ′′) = V

and obtain (16).
We note how, for constant P , the ratio C/V plays a prominent role in Theorem 42, specifically in the

expression
⌊
CP
V

⌋
. And, as the following example illustrates, the C/V -ratio does not need to be very high

before a Hamiltonian cycle is guaranteed.

Example 43 (Hamiltonicity of BPART only-child BN) Consider an only-child BPART network with
C = 90, V = 30, P = 3, and R = true. In particular, consider the undirected graph γ′ induced by the
root nodes V in β, after moralization to β′. Using Theorem 42, we obtain (P − 1) ⌊CP/V ⌋ = 18, while
n(γ′)/3 = 10, so a Hamiltonian cycle is guaranteed.

24

There are cases where one might not be able to show that a Hamiltonian cycle must exist, but one can
compute the longest cycle c(γ′) and apply the following theorem due to Dirac [23].

Theorem 44 (Longest cycle, Dirac) Let c (G) be the length of the longest cycle of an undirected graph
G. If G is 2-connected then c (G) ≥ min (n(G), 2δ(G)) .

The longest cycle is determined by the following result when the underlying BN β is of a certain type.

Corollary 45 (Longest cycle in BPART only-child BN) Consider an only-child BPART BN β con-
structed with R = true, and let V be the root nodes in β. Further, let β′ be the moralized graph of β, and
consider γ′ = β′ [V], the subgraph of β′ induced by V . If γ′ is 2-connected then

c(γ′) ≥ min

(
V, 2 (P − 1)

⌊
CP

V

⌋)
. (17)

Proof. Theorem 44 applies with n = V = |V | and δ(G) ≥ (P − 1)
⌊
CP
V

⌋
; the result follows.

Again, we see that the C/V -ratio is part of a lower bound (17), here for the longest cycle c(γ′).

Example 46 Consider a 2-connected undirected graph γ′ = β′ [V] constructed, using tree clustering, from
an only-child BPART BN β created using input parameters R = true, P = 3, V = 30, and C = 60. In this
case, Corollary 45 applies and the longest cycle is c(γ′) = min (30, 24) = 24.

While only the longest cycle c(γ′) is mentioned in the corollary and example above, it is clear that there
may be several cycles, of varying length, in a moralized BN. Due to the limited number of root nodes V
these cycles are likely to interact, increasing the chances of fill-in edges, leading to larger cliques and larger
maximal clique sizes.

5.5 Irregular BNs

So far, the role of the C/V -ratio in regular Class A BNs has been established. We now turn to irregular
Class B BNs, which are generated by setting R = false when invoking BPART andMPART. How do Class
A regular (R = true) BPART BNs compare to Class B irregular (R = false) BPART BNs, specifically
with regard to the Hamiltonicity of the moralized graph as induced by the root nodes of the BN? The
following theorem addresses this question by considering random variables Mi and Mr representing the
minimal root node out-degree in the BPART irregular and regular case respectively (see Section 4.3.4).
Using expectations, we consider undirected graphs Gr and Gi, both induced over the moralized graphs
using the root nodes of the respective Class A and Class B BPART networks.

Theorem 47 Let V r and V i be root nodes for only-child BPART BNs α and β generated using R = true
and R = false respectively, and put Mr = min(V r) and Mi = min(V i). Let Gr = α′[V r] and Gi = β′[V i].
Further, for b > 0, let d(Gr) := bE(Mr) and d(Gi) := bE(Mi) respectively and assume that there exist
BPART input parameters for any E(Mr) where 0 ≤ E(Mr) < C. There exist BPART input parameter
values (excluding for R) such that Gr is Hamiltonian while Gi is not necessarily Hamiltonian.

Proof. For R = true, set the other input parameter values to BPART such that E(Mr) = V
3(P−1) ,

which according to Theorem 39 gives d(Gr) = V
3 . Using Theorem 41, Gr is Hamiltonian. For R = false,

suppose that the same BPART input parameters values are used as for the R = true case (except for
R). Clearly, E(Mi) < E(Mr) and consequently d(Gi) < d(Gr) and d(Gi) < V

3 and as a result G
i is not

necessarily Hamiltonian according to Theorem 41.
Theorem 47 says that, for certain BPART input parameter values excluding R’s, the induced subgraph

G
r constructed from a regular BPART BN is Hamiltonian, while there is no such guarantee for Gi con-

structed from an irregular BPART BN.
The result above and the analysis in Section 4.3.4 suggest that regular Class A BPART networks are,

for given values of the input parameters excluding R, more likely to have cycles that need fill-in edges than
irregular Class B BPART networks. This again makes the inference problem harder for tree clustering in
the Class A BPART case. Further insight is provided by the experiments discussed in Section 6.4, where
we consider the effect of regularity on the hardness of tree clustering in terms of maximal clique sizes and
inference times.

25

5.6 Hardness and Conditional Probability Tables

To investigate the effect of different conditional probability tables (CPTs), we consider, as described in
Section 4.3.2, three CPT types: deterministic CPTs (or, and, and xor), uniform CPTs, and random CPTs.
In the BPART and MPART algorithms, CPTs are controlled using the Q and F input parameters.

The values of CPTs have, with a few notable exceptions discussed below, little significance during tree
clustering’s compilation phase, since this phase is primarily impacted by a BN’s topology. The exceptions
include the two techniques of zero-compression and approximation, techniques that also take numerical CPT
values into account [24]. These techniques are not used or investigated in this article; we leave this for future
research. In the remainder of this section, we focus on tree clustering’s propagation phase.

5.6.1 Random Root Nodes and Random Non-Root Nodes

The nature of a BN’s CPT impacts the number of MPEs, which we formally define as follows in the case of
randomly generated BNs.

Definition 48 (Number of MPEs) Let β be a randomly generated BN with MPEs X∗ = {x∗1, . . ., x∗u}.
The number of MPEs in β is defined as a random variable U = |X∗| = |{x∗1, . . ., x∗u}|.

For both BPART and MPART BNs with random CPTs there will be very few MPEs, typically one, or
E(U) ≈ 1. The reason for this is that it is very unlikely that two different explanations will have exactly the
same probability, when all conditional probabilities are sampled from a continuous distribution as is done
when Q = random and F = random. The existence of one MPE means that just one propagation in the
clique tree β′′′ is required. The time required for one clique tree propagation increases with the C/V -ratio,
on average, due to increased clique sizes, as argued earlier in this section.

5.6.2 Uniform Root Nodes and Deterministic Non-Root Nodes

We consider now the case of uniform root nodes and boolean leaf or-nodes, or Q = uniform and F = or.
For these SAT-like BPART BNs there are lessons to be learned from the extensive research on SAT and
constraint satisfaction problems using search algorithms [11, 13, 26, 71]. Specifically, an approximately log-
linear relationship between the C/V -ratio and the expected number of solutions E(U) has been empirically
established, with for example Ê(U) ≈ 1000 for C/V = 3 and Ê(U) ≈ 11.5 for C/V = 4.67 for the case
of V = 24 variables and satisfiable problem instances [71]. In other words, as the C/V -ratio increases the
number of solutions decreases on average. While other characteristics of search space structure, such as the
size variability of global minima [26] and the decrease in the number of local minima with the C/V -ratio [71]
are important, it is clear that the drop-off in E(U) as a function of the C/V -ratio is prominent.

For SAT-like BNs the number of MPEs would depend on the C/V -ratio exactly as for SAT. The
propagation part of the inference problem should thus be relatively harder for H�	
� belief revision to
handle at low C/V -ratios since repeated propagations are required to arrive at an MPE x∗ [50]. As the
C/V -ratio is increased, a question is how the resulting decrease in E(U) – suggesting decreased inference
time due to fewer propagations – will interact with the increase in inference time due to larger cliques in
the clique tree. The experimental part of this article sheds light on this question.

6 Experiments with Hard and Easy Synthetic Networks

In this section we report on experiments performed with the H�	
� system using BNs generated by imple-
mentations of the BPART and MPART algorithms. Different parameters, as presented in Section 4.3.1,
that control the nature of BNs generated by BPART and MPART have been varied in the experiments.
Which parameters should be systematically varied? Our main concern in answering this question is to make
sure that inference hardness, in terms of tree clustering’s maximal clique size, can be varied in an interesting
fashion. Some of the parameters, such as total number of BN nodes N = V +C and number of states per BN
node S, are obviously tied to the complexity of inference, and are somewhat less interesting. Other structural
and distributional effects may not be as obvious and are therefore the main focus in the experiments below.

26

Specifically, we study the effect – on maximal clique size and inference times – of varying the C/V -ratio,
the graph regularity parameter R, and the CPT value parameters F and Q.

In the following, Section 6.1 outlines the methodology used. In Section 6.2, we present results from
computational experiments that show how maximal clique size and inference time vary with the C/V -ratio
for SAT-like BNs generated using the BPART construction. Section 6.3 follows up on Section 6.2 and
compares, using the same BPART instances, the M
�
���C�
���W�
	�� and M
�
���F
��I�W�
	��
triangulation heuristics. Section 6.4 presents experiments for BNs of varying regularity, again for the
BPART construction. Section 6.5 provides experimental results for the MPART construction – unlike for
the other experiments we here used random CPTs and also kept the total number of BN nodes constant.

6.1 Methodology

In the experiments reported here, we generated random samples of BN instances according to the BPART
or MPART constructions, ran the H�	
� system [24] on the samples, and recorded key clique tree charac-
teristics as introduced in Definition 10. In particular, we focused on the closely related statistics for maximal
clique size ℓ (5) and maximal number of nodes in a clique h (3). Given the random generation of instances,
these characteristics may be considered random meta-variables, and we investigated maximal clique size L
and number of nodes in a maximal clique H, with corresponding sample statistics such as maximal clique size
sample mean x̄L and maximal clique size sample standard deviation sL.

5 For tree clustering, the maximal
clique size results obviously impact both belief updating and belief revision since both rely on clique trees.

While we focus primarily on maximal clique size results, we also present some inference time results for
belief revision. Specifically, we present inference time statistics such as sample median m, sample mean x̄,
and sample standard deviation s for the time (in seconds) to compute an MPE x∗ ∈ {x∗1, . . . ,x∗u} – all as
a function of the C/V - ratio. These results are, we believe, interesting in their own right and also upper
bound the inference time for belief updating. For the timing experiments, a Dell 410 700MHz Pentium III
CPU with 1GB of RAM and using up to 9GB of swap space was used.

The number of parents of a non-root node was P = 3 in all experiments except for those reported in
Section 6.5, where non-root nodes have two parents, so P = 2. Note that state space sizes of cliques
including ℓ (6), “clique sizes” for short, are given as numbers indicating memory requirements, where the
amount of primary memory (RAM) required for storage is implementation-dependent. For instance, an
implementation of tree clustering might use a double data type requiring 8 bytes, in which case the amount
of RAM r needed to store a 24-node clique consisting of binary (S = 2) nodes is r = ℓ× 8 bytes = Sh × 8
bytes = 224 × 8 bytes = 128MB.

We do not report on experiments with as large SAT-like networks as the propositional formulas used
in earlier experimental research on SAT – see, for example, [55] or repositories such as SATLIB at http:
//www.satlib.org. H�	
� was not able to process these large networks for non-trivial C/V -ratios. For the
same reason, many of our results do not approach or go beyond the region where C/V ≈ 4.25, even though
this is the phase-transition region for SAT formulas [55]. This is in line with our goal of constructing BNs for
benchmarking and understanding BN computational hardness rather than focusing on the C/V ≈ 4.25 phase
transition. We should also note that H�	
�’s default settings were generally used in these experiments. The
M
�
���F
��I�W�
	�� triangulation heuristic was used, except in Section 6.3. H�	
�’s default “off”
settings were used for compression and approximation. As far as evidence for leaf nodes, the default was to
clamp binary nodes to 1 (or true).

6.2 BPART Class B Networks: Hardness and the C/V Phenomenon

What is the empirical impact, on maximal clique sizes and inference times, of varying the C/V -ratio when
generating irregular (R = false) BPART BNs? In order to investigate this question, 800 SAT-like BNs were
generated using the signature BPART(uniform, or, 30, C, 2, false, 3), varying the number of leaf nodes
from C = 60 to C = 102. In other words, the C/V -ratio was varied from C/V = 2.0 to C/V = 3.4. The
leaf nodes were clamped to 1 during H�	
� inference. In Table 4, Figure 7, and parts of Table 5, maximal
clique size and inference time results from these experiments are reported.

5The term “meta-variable” is used to distinguish these random variables from the random variables or nodes making up the
BNs themselves.

27

Maximal clique size C/V-ratio of BPART Class B (irregular) BNs
Nodes H State space L 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Total

14 16, 384 5 1 6
15 32, 768 26 7 33
16 65, 536 48 28 10 1 87
17 131, 072 19 37 35 23 10 2 126
18 262, 144 2 23 41 50 33 10 7 1 167
19 524, 288 4 13 20 41 46 30 16 170
20 1, 048, 576 1 6 14 41 42 39 143
21 2, 097, 152 2 1 20 37 60
22 4, 194, 304 1 7 8

Number of instances 100 100 100 100 100 100 100 100 800
Mean number of nodes x̄H 15.87 16.86 17.60 18.07 18.65 19.29 19.78 20.33 18.31
Mean size (in 1000s) x̄L 70.94 150.6 238.6 329.7 503.3 720.9 1,077 1,565 582.0

Table 4: Experimental results showing statistics for BNs generated by the BPART algorithm with R = false
(the irregular case), with V = 30 and C ranging from 60 to 102. The number of nodes in and sizes of the
maximal cliques are shown for instances with varying C/V ratios. The smallest maximal clique contained
h = 14 nodes (for 5 instances with C/V = 2.0), while the largest maximal clique contained h = 22 nodes
(for 7 instances with C/V = 3.4).

BN parameters BPART Class A (regular) BPART Class B (irregular) Ratios
V C C/V mr

T x̄rT srT x̄rL mi
T x̄iT siT x̄iL x̄rT/x̄

i
T x̄rL/x̄

i
L

30 60 2.0 16.70 19.4 11.5 382.1 3.67 3.10 2.10 70.94 3.13 5.39
30 66 2.2 29.00 33.1 16.4 655.4 7.11 8.21 5.01 150.6 4.04 4.35
30 72 2.4 42.84 45.6 19.8 923.0 9.94 11.61 6.75 238.6 3.93 3.87
30 78 2.6 58.41 65.8 31.8 1, 376 14.60 18.38 12.52 329.7 3.58 4.17
30 84 2.8 101.45 109.8 59.7 2, 081 21.43 26.31 17.98 503.3 4.17 4.13
30 90 3.0 121.05 131.0 66.3 2, 642 29.41 35.32 21.36 720.9 3.71 3.66
30 96 3.2 156.45 158.4 65.4 3, 324 45.64 53.78 33.90 1, 077 2.95 3.09
30 102 3.4 168.30 192.0 97.4 4, 708 58.74 67.36 42.79 1, 565 2.85 3.01

Table 5: The effect of regular and irregular BPART BNs on H�	
� maximal clique sizes and computation
times (in seconds) is shown. The following sample statistics are presented for the regular case: median
computation time mr

T, mean computation time x̄
r
T, standard deviation for computation time s

r
T, and mean

maximal clique size x̄rL. Similar statistics are presented, with “i” superscripts, for the irregular case.

From the results and analysis provided in Table 4, we conclude that for BPART the maximal clique size
increases, on average, with the C/V -ratio. This is in correspondence with the theoretical results earlier in
the article. Figure 7 shows, using linear regression, how the number of nodes in the maximal clique varies
with the C/V -ratio. This linear regression result shows that for BPART, given the parameters used here,
the sample mean number of nodes in the maximal clique, x̄H, grows linearly with C/V -ratio. We obtain
the following empirical expressions for the maximal number of nodes in a clique h and maximal clique size
ℓ: h = 3.06 × C/V + 10.0 and ℓ = 2h = 23.06×C/V+10.0. The regression is statistically significant, with an
R2 = 0.716, an F -ratio of 2013, and a p-value of 2.10× 10−220. The 95% confidence interval for the slope of
the regression line is (2.93, 3.20).

Let us now discuss the inference time results presented in Figure 7 and Table 5. The linear growth of
x̄H and h with C/V translates into exponential growth of x̄L and ℓ with C/V . This exponential growth of
ℓ with C/V in turn explains the approximately exponential growth in inference times reported in Figure 7.
This result provides an empirical answer to the question raised in Section 5.6: On the one hand, we recall
that fewer propagations due to a decrease in E(U) should cause a decrease in the total inference time. On
the other hand, an increase in expected maximal clique size E(H) should cause an increase in inference time.
Clearly, the latter effect outweighs the former here.

28

y = 3.0637x + 10.034

R2 = 0.7161

10

12

14

16

18

20

22

24

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Ratio C/V

N
o

d
es

 in
 m

ax
im

al
 c

liq
u

e
BPART Class B (irregular) BNs

Linear regression, BPART Class B (irregular) BNs

1

10

100

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Ratio C/V

C
o

m
p

u
ta

tio
n

 ti
m

e
(s

ec
)

Mean for BPART Class B (irregular) BNs

Median for BPART Class B (irregular) BNs

Figure 7: These results are for Class B (irregular) BPART BNs with V = 30 root nodes and a C/V -ratio
ranging from C/V = 2.0 to C/V = 3.4. Left: The number of nodes in the clique tree’s maximal clique is
plotted as a function of the C/V-ratio. In this scatter plot, points representing BN instances as well as linear
regression results are displayed. Right: In this graph of averages and medians, the MPE computation time
sample means x̄T and sample medians mT are shown.

We note, in Table 5, that the standard deviations siT for the inference times are substantial. The high
standard deviation is typical for this area of research and has been observed also for SAT [55,62,63]. Both
Table 4 and Figure 7 provide evidence for why the inference time standard deviation siT is substantial:
Inference time clearly depends on the maximal clique size L, which is exponential in the number of nodes
in the maximal clique H. A change in H has an exponential effect on L, which again has an approximately
linear effect on inference time. In the column C/V = 2.0 in Table 4, H ranges from 14 to 18 giving a 28.6%
increase from the smallest (H = 14) to the largest value (H = 18). This causes L to range from 16,384 to
262,144, a 1500% increase from the smallest (L =16,384) to the largest (L = 262,144) value.

Table 6 contains further details for the seven extreme instances listed in the column C/V = 2.0 in Table
4. Table 6 displays the five instances with smallest maximal clique size ℓ(β0) = ℓ(β12) = ℓ(β73) = ℓ(β89) =
ℓ(β92) = 16, 384 and the two instances with largest maximal clique size ℓ(β6) = ℓ(β80) = 262, 144. The
following example illustrates how total clique tree size k were distributed among kM and kR (Definition 33)
for one of these example BPART instances.

Example 49 Table 6 contains a BPART(uniform, or, 30, 60, 2, false, 3) instance β12. The total state
space size for the clique tree β′′′12 is given by k

(
β′′′12
)
= kM

(
β′′′12
)
+ kR

(
β′′′12
)
= 75, 840, where kM

(
β′′′12
)
=

60× 24 = 960 and kR
(
β′′′12
)
= 2× 24 + 1× 25 + · · ·+ 1× 213 + 4× 214 = 73, 792.

In terms of number of cliques in the above example, the cliques of size Si = 24 are clearly dominant,
with qi = 60 cliques contributing towards kM

(
β′′′12
)
: 60× 24 = 960. However, in terms of impact on k

(
β′′′12
)
,

kR
(
β′′′12
)
and in particular the maximal cliques of size Si = 214 are much more important, with contribution

4× 214 = 65, 536.
Several points can be made regarding these seven extreme instances. First, while most cliques have size

|ΩH | = 16 as indicated by the lower bound of Theorem 34, there is a strong heavy tail effect present, in
particular in β6 with total clique size k = 439, 776 and in β80 with k = 284, 192. The three largest cliques
make up 93.1% and 96.6% of total clique size in BNs β6 and β80 respectively. In fact, β80 is extreme; the
size ℓ of the largest clique is 32 times that of the second largest clique. Clearly, whether cliques of size 217

and 218 are present (for β6 and β80) or absent (for the rest) has, in this example, a dramatic impact on total
clique tree size and thereby on variation in total clique tree size between the different instances. This is a
pattern that may in part explain the large standard deviations for inference times in Table 5.

29

Clique size Clique trees for BPART Class B BNs, C/V = 2.0
Nodes h State space ℓ β′′′0 β′′′12 β′′′73 β′′′89 β′′′92 β′′′6 β′′′80

4 16 60 62 61 60 60 60 60
5 32 2 1 3 3 1 1
6 64 2 1 2 1 1
7 128 2 4 1 3 4 2
8 256 1 2 2 2 2 1
9 512 2 1 2 3 2 2

10 1, 024 1 1 1 1
11 2, 048 2 1 1
12 4, 096 2 1 1 1 2 2 2
13 8, 192 1 3 1 1
14 16, 384 2 4 4 4 2 2
15 32, 768
16 65, 536
17 131, 072 1
18 262, 144 1 1

Maximal clique size ℓ 16,384 16,384 16,384 16,384 16,384 262,144 262,144
Total clique tree size k 61,056 75,840 81,200 99,138 53,344 439,776 284,192
Maximal number of nodes h 14 14 14 14 14 18 18

Maximal clique ℓ
k × 100% 26.8% 21.6% 20.2% 16.5% 30.7% 59.6% 92.2%

Top three cliques 60.4% 64.8% 60.5% 49.6% 76.8% 93.1% 96.6%

Table 6: Randomly generated BPART Class B instances, for V = 30 and C = 60, showing the seven
instances with the smallest and largest maximal clique sizes. A column contains, for the clique tree β′′′i of
a BN instance βi, the number of cliques it contains for different clique sizes. From a sample of 100 BNs,
the five columns β0, β12, β73, β89, and β92 present the BN instances with smallest maximal clique size
ℓ = 16, 384, while the two columns β6 and β80 present the BN instances with largest maximal clique size
ℓ = 262, 144. Of these instances, β6 has the largest total clique size k = 439, 776, while β92 has the smallest
total clique size k = 53, 344.

In related experiments, details of which are omitted due to space restrictions, the randomly generated
BNs consisted of V ∈ {20, 30, 35, 40} root nodes, the number of leaf nodes C was varied from 40 to 140, and
the C/V -ratio was ranging from 2.0 to 4.0. The results were similar to what was reported above: As the
C/V -ratio increased, the mean inference time increased at an approximately exponential rate.

Stated qualitatively, our experiments confirm the hypothesis that a “high” C/V -ratio implies a “large”
maximal clique size which again implies a “long” inference time. There is a strong causal relationship from
a high C/V -ratio to a large maximal clique size. Of course, this is for the BPART topology, using certain
ranges for the input parameters of BPART, and for a particular tree clustering triangulation heuristic
M
�
���F
��I�W�
	��. In the next section we turn to a more detailed study of triangulation heuristics.

6.3 BPART Class B Networks: Triangulation Heuristics

Here, we report on experiments with the M
�
���C�
���W�
	�� triangulation heuristic. A first question
is whether varying the C/V -ratio has a similar impact when using the M
�
���C�
���W�
	�� heuristic
as was observed for the M
�
���F
��I�W�
	�� heuristic in Section 6.2. In order to answer this question,
additional experiments were performed using the BPART Class B instances from Section 6.2, but this
time compiled by tree clustering using the M
�
���C�
���W�
	�� heuristic. The maximal clique sizes
resulting from this set of experiments were analyzed using linear regression. The regression results for
M
�
���C�
���W�
	�� were statistically significant, with an R2 = 0.695, a standard error of 0.906, and
an F -ratio of 1822. This regression gives the following empirical results for the maximal number of nodes
in a clique h and maximal clique size ℓ: h = 2.98 × C/V + 10.5 and ℓ = 2h = 22.98×C/V+10.5. The 95%
confidence interval for the slope of h is (2.85, 3.12) with a p-value of 3.3 × 10−208. The 95% confidence

30

y = 2.5869x + 13.358

R2 = 0.7035

y = 3.0637x + 10.034

R2 = 0.7161

10

12

14

16

18

20

22

24

26

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Ratio C/V

N
o

d
es

 in
 m

ax
im

al
 c

liq
u

e
BPART Class A (regular) BNs
Linear regression, BPART Class A (regular) BNs
Linear regression, BPART Class B (irregular) BNs

0

20

40

60

80

100

120

140

160

180

200

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Ratio C/V

C
o

m
p

u
ta

tio
n

 ti
m

e
(s

ec
)

Mean for BPART Class A (regular) BNs
Mean for BPART Class B (irregular) BNs

Figure 8: Tree clustering results for BPART BNs with V = 30 root nodes and C/V -ratios from C/V = 2.0
to C/V = 3.4 are shown. The plots reflect both Class B irregular and Class A regular BNs. Left: The
number of nodes in the maximal clique is shown as a function of the C/V -ratio. Data points representing
Class A regular BPART instances as well as regression results are displayed. The regression line for Class
B irregular BPART instances is also included. Right: The mean computation times (in seconds) is plotted
as a function of C/V -ratio. Specifically, the sample mean x̄rT for the Class A regular BNs and the sample
mean x̄iT for the Class B irregular BNs are shown for varying levels of the C/V -ratio.

interval for the intercept of the regression line is (10.13, 10.89) with a p-value of 2.9× 10−273. These results
show that the number of nodes in the maximal clique h grows linearly with C/V -ratio also when the
M
�
���C�
���W�
	�� heuristic is used. This gives an exponential growth in ℓ with implications similar
to what was discussed in Section 6.2 for M
�
���F
��I�W�
	��.

A second question is whether M
�
���C�
���W�
	�� and M
�
���F
��I�W�
	�� produce very
different maximal clique sizes. Comparing the respective regression lines, it is clear that M
�
���F
��-
I�W�
	�� is, on average, slightly superior toM
�
���C�
���W�
	�� for the C/V range considered here.
One might ask whether the difference is statistically significant. Out of the 800 BN samples, there were 525
instances in which the maximal clique sizes were the same for the two heuristics, 231 instances in which
the M
�
���F
��I�W�
	�� was better, and 44 instance in which M
�
���C�
���W�
	�� was better.
Doing a paired comparison using the sign test, we found a difference between the two heuristics at the 1%
significance level; M
�
���F
��I�W�
	�� was indeed better according to this statistical test.

6.4 BPART Class A Networks: Hardness and Graph Regularity

What is the impact, on maximal clique sizes and inference times, of varying the C/V -ratio when generating
regular (R = true) BPART BNs? To answer this question and to complement our analysis of regularity,
as presented in Section 5.4, we created BNs using the BPART construction while varying the C/V -ratio,
as earlier, but generating Class A (regular) BNs. Specifically, the signature used for BN construction was
BPART(uniform, or, V, C, 2, true, 3). A similar signature BPART(uniform, or, V, C, 2, false, 3) was
used to construct Class B (irregular) BNs in Section 6.2. The essential difference between the two signatures
is that in the relaxed Class A regular case, each root node has essentially the same number of children, while
in the Class B irregular case, the number of children is exactly distributed as b (C,P/V) (see Theorem 20)
and approximately distributed as b (CP, 1/V) (see Theorem 21).

Maximal clique size and inference time results for these experiments, where leaf nodes again were clamped
to 1 during H�	
� inference, are presented in Table 5 and in Figure 8. Table 5’s columns x̄rL and x̄

i
L

summarize the bottom rows of Table 7 and Table 4 respectively. Table 7 presents in detail how the maximal

31

Maximal clique size C/V-ratio of BPART Class A (regular) BNs
Nodes H State space L 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Total

16 65, 536 3 3
17 131, 072 14 4 18
18 262, 144 44 16 10 1 71
19 524, 288 31 44 31 14 1 2 123
20 1, 048, 576 8 36 48 48 28 13 3 3 187
21 2, 097, 152 11 36 57 53 45 17 219
22 4, 194, 304 1 14 31 48 57 151
23 8, 388, 608 1 4 23 28

Number of BN instances 100 100 100 100 100 100 100 100 800
Mean number of nodes x̄H 18.27 19.12 19.60 20.22 20.84 21.16 21.53 22.00 20.34
Mean size (in 1000s) x̄L 382.1 655.4 923 1,376 2,081 2,642 3,324 4,708 2011

Table 7: Experimental tree clustering results showing statistics for BNs generated by BPART with input
parameters R = true (Class A regular case), V = 30, and C ranging from 60 to 102. The number of nodes
and size of the maximal clique is shown for varying C/V ratios. The smallest maximal clique contains h = 16
nodes (for C/V = 2.0), while the largest maximal clique contains h = 23 nodes (for C/V = 3.4).

clique size and number of nodes in the maximal clique vary with the C/V -ratio.
Figure 8 summarizes linear regression results, showing how the number of nodes in the maximal clique,

x̄H, varies linearly with the C/V -ratio. The regression gives these results for the maximal number of nodes
in a clique h and maximal clique size ℓ: h = 2.59×C/V +13.4 and ℓ = 2h = 22.59×C/V+13.4. The regression,
which is based on 800 observations, is statistically significant, with R2 = 0.703, an F -ratio of 1893, and a
p-value of 7.5× 10−213. The 95% confidence interval for the slope of the regression line is (2.47, 2.70). For
the parameters used here, the result for h shows that for the BPART Class A construction, the number of
nodes in the maximal clique grows linearly with C/V -ratio. This linear growth of h explains, similar to what
was discussed in Section 6.2, the approximately exponential growth of ℓ and increasing inference times.

Can we conclude that the maximal clique sizes for BPART Class A and Class B BNs are significantly
different? Comparing with the corresponding results for Class B BNs in Table 4, we note that the regular
Class A instances in Table 7 are skewed towards higher maximal clique sizes. A statistical t-test for two
population means, assuming unknown population means and variances, was performed for the maximal clique
sizes of the Class A and Class B samples. With t = 26.5, and critical values for t of 1.65 (one-tail) and 1.96
(two-tail), the null-hypothesis that the two population means are equal, µiL = µrL, is rejected. This result,
along with Table 7 and Figure 8, sheds additional light on the difference in computation times between Class
A and Class B BNs. This result is also consistent with the theoretical analysis in Section 5.4.

The regular BPART BNs on average required three to four times more time for computation compared
to irregular BPART BNs. More formally, consider the sample mean computation times for the regular case,
x̄rT, versus the irregular case, x̄

i
T. From the ratios x̄rT/x̄

i
T one can easily determine that H�	
� consistently

was faster on irregular than on regular BNs: 2.85 ≤ x̄rT/x̄iT ≤ 4.17 in Table 5. The results for maximal clique
size sample means, x̄rL and x̄

i
L, were in line with the results for x̄

r
T and x̄

i
T. From the ratios between these

sample means, x̄rL/x̄
i
L, we see that there was a corresponding larger sample mean for Class A regular BNs

than for Class B irregular BNs: 3.01 ≤ x̄rL/x̄iL ≤ 5.39 in Table 5.
In summary, we have shown that regularity is a factor not only for iterated belief propagation when

used on information theory BNs [28,48], but also for tree clustering on closely related BNs. Confirming and
adding detail to the analytical results, we have shown empirically that regular Class A BNs are harder, on
average, than irregular Class B BNs due to their larger maximal cliques.

6.5 MPART Class B Networks: Hardness and Conditional Probabilities

In Section 6.2, Section 6.3, and Section 6.4 we reported results for BPART BNs. What happens if several
of the parameters as well as the topology are changed such that quite different BNs are generated? Is the
C/V -ratio still important when BNs are generated using the MPART construction? These questions are

32

BN parameters Statistics for MPART BNs
V C V+C C/V mT x̄C sC x̄P sP x̄T sT x̄L
146 110 256 0.75 0.156 0.148 0.013 0.010 0.008 0.158 0.014 0.21
136 120 256 0.88 0.203 0.195 0.047 0.014 0.009 0.209 0.050 1.36
126 130 256 1.03 0.281 0.268 0.071 0.047 0.046 0.315 0.109 13.40
116 140 256 1.21 0.688 0.566 0.359 0.300 0.352 0.867 0.710 97.08
106 150 256 1.42 4.204 3.439 3.594 3.174 3.617 6.614 7.208 1, 186
104 152 256 1.46 8.039 5.565 5.121 5.365 5.163 10.929 10.281 1, 951
102 154 256 1.51 12.080 10.030 10.935 9.852 11.103 19.882 22.035 3, 509
100 156 256 1.56 20.420 17.811 22.477 17.585 22.568 35.396 45.044 7, 229

Table 8: Inference times (in seconds) for a total of 800 BNs generated using the MPART construction
are shown. Median computation time mT, mean compilation time x̄C with standard deviation sC, mean
propagation time x̄P with standard deviation sP, mean computation time x̄T with standard deviation sT,
and the mean size of the maximal clique x̄L are also presented.

y = 17.692x - 5.8734

R2 = 0.9081

0

5

10

15

20

25

30

0.7 0.9 1.1 1.3 1.5 1.7

Ratio C/V

N
o

d
es

 in
 m

ax
im

al
 c

liq
u

e

MPART BNs Linear regression, MPART BNs

0.1

1

10

100

0.7 0.9 1.1 1.3 1.5 1.7

Ratio C/V

C
o

m
p

u
ta

tio
n

 ti
m

e
(s

ec
)

Mean for MPART BNs Median for MPART BNs

Figure 9: For BNs generated using the MPART construction, these plots display tree clustering results as
function of C/V -ratio. Here, the C/V -ratio ranges from C/V = 0.75 to C/V = 1.56. These results are
for non-root nodes C ranging from C = 110 to C = 156, and for root nodes V ranging from V = 146 to
V = 100. Left: The number of nodes in the maximal clique is plotted as a function of the C/V -ratio. This
scatter plot shows BN instances as well as linear regression results. Right: The sample mean computation
times x̄T and sample median computation times mT are displayed in this log-plot.

investigated empirically in this section, using a data set containing 800MPART samples. The signature used
to generate BNs wasMPART(random, random, V, C, 2, false, 2) with C ∈ {110, . . . , 156} and V = 256−C,
giving a C/V -ratio ranging from 0.75 to 1.56. Following Kask and Dechter [41], we kept N constant, varied
V , and determined C by setting C = N − V . The effect of this is a non-linear change in the C/V -ratio as
a function of change in C. Also note that there are P = 2 parents per non-root node rather than P = 3
as used in the experiments above; other differences are that random CPTs were used and nodes were not
clamped during inference.

Figure 9 plots results in the form of individual data points – number of nodes in the maximal clique of
a sample BN as function of C/V -ratio – and also displays linear regression results. The following empirical
results for h and ℓ were obtained: h = 17.7 × C/V − 5.87 and ℓ = 2h = 217.7×C/V−5.87 The regression is
statistically significant, with an R2 = 0.908, an F -ratio of 7882, and a p-value of 0. The 95% confidence
interval for the slope of the regression line for h is (17.3, 18.1). As before, the regression results show that h

33

Maximal clique size C/V-ratio of MPART BNs
Nodes H State space L 0.75 0.88 1.03 1.21 1.42 1.46 1.51 1.56

4 16 1
5 32 9
6 64 25
7 128 32 3
8 256 17 17
9 512 12 23 3
10 1, 024 3 29 7
11 2, 048 1 18 18
12 4, 096 7 18 4
13 8, 192 3 31 3
14 16, 384 7 10 1
15 32, 768 8 26
16 65, 536 7 22 4 1 1
17 131, 072 1 23 11 4 3 1
18 262, 144 10 22 10 9 3
19 524, 288 1 18 16 10 7
20 1, 048, 576 1 25 33 21 17
21 2, 097, 152 10 21 21 22
22 4, 194, 304 5 9 20 20
23 8, 388, 608 4 4 9 18
24 16, 777, 216 2 5 5
25 33, 554, 432 1 4
26 67, 108, 864 3

Number of BN instances 100 100 100 100 100 100 100 100
Mean number of nodes x̄H 7.08 9.75 12.61 15.79 19.15 20.07 20.72 21.58
Mean size (in 1000s) x̄L 0.21 1.36 13.40 97.08 1,186 1,951 3,509 7,229

Table 9: Experimental results for tree clustering on BNs generated by the MPART construction. Here,
C + V = 256 for all C/V ratios, with C ranging from 110 to 156 and V ranging from 100 to 146. The
number of nodes in and sizes of the maximal cliques are shown for a number of instances for varying C/V
ratios. The smallest maximal clique contains h = 4 nodes (for C/V = 0.75), while the largest maximal clique
contains h = 26 nodes (for C/V = 1.56).

increases linearly with C/V -ratio, giving an approximately exponential growth in ℓ with the C/V -ratio. An
approximately exponential growth in maximal clique size ℓ explains, to a large extent, the inference times
reported in Table 8 and to the right in Figure 9. Table 9 provides further details on how statistics of the
maximal clique size, including x̄H and x̄L, increase with the C/V -ratio.

The results for MPART were in many respects similar to the results for BPART. However, there was
slightly greater variation in the MPART case, as can be seen by comparing the sample standard deviations
or by comparing Table 4 and Table 9. Also, the growth in maximal clique size and thus in computation time
as a function of C/V -ratio was in fact stronger for MPART than for BPART. This is clearly in part due
to the different CPTs used, following the discussion in Section 5.6. For MPART, CPT values were picked
from a random distribution, giving just one propagation, while for BPART multiple propagations were in
general needed (see Section 5.6).

We also note that these MPART BNs are similar to the multipartite BNs investigated by Kask and
Dechter [41]. They also randomly generated BNs with C/V ≤ 0.75 and N = V + C = 256 nodes. For
C/V ≤ 0.75, our MPART samples were relatively easy for H�	
� to solve on the average. For example, the
highest C/V -ratio used by Kask and Dechter, C/V = 0.75, had for MPART a sample mean inference time
of x̄T = 0.1579 seconds (see Table 8, row C/V = 0.75) and a maximal clique size sample mean x̄L = 210 (see
Table 9, column C/V = 0.75). For MPART, the largest maximal clique size in the C/V = 0.75 subsample
is ℓ = 2, 048. When using MPART BNs with C/V ≤ 0.75 in experiments with other algorithms, one should

34

keep in mind that these BNs are in fact relatively easy for H�	
� to solve on average. On the other hand,
with C/V ≥ 1.50 these MPART BNs are typically quite challenging.

7 Conclusion and Future Work

The performance of Bayesian network (BN) inference algorithms has in previous research been empirically
evaluated using BN instances from applications. To complement such experiments, randomly generated BNs
have also been used [7, 17, 34, 41, 56, 69, 70]. We believe that a certain amount of care is required when
randomly generating BNs. The generation algorithms need to provide “knobs” for controlling the difficulty
of the generated instances. The synthetic BNs need to be idealized, to support analysis, but at the same
time they also need to be somewhat realistic and relevant to applications.

We have developed, based on previous research, a paradigm for systematically generating increasingly
hard random instances for BN inference. One of the classes of BNs, the bipartite BPART networks generated
by the BPART algorithm, extends research on generating hard instances for satisfiability problems [55].
Here, we have exploited the relationship between computing an MPE and finding a satisfying assignment of
a corresponding CNF formula to construct hard instances for the MPE problem. These BPART networks
are also similar in structure to application BNs from medicine [67] and information theory [27, 28, 49], and
our results should be relevant to these two areas of research. The other class of BNs, theMPART networks,
is closely related to an approach of Kask and Dechter [41]. For these MPART networks we have analyzed
the relationship to the BPART BNs.

Different algorithms for BN inference in general and MPE computation in particular have been investi-
gated using our experimental paradigm [51]. In this article, we have focused on the H�	
� tree clustering
algorithm [2, 37, 39, 46]. H�	
� is one of the best probabilistic inference algorithms available, and using
this algorithm, and systematically varying some structural and distributional parameters of the synthetic
Bayesian networks, we have shown how H�	
� inference is impacted. In particular, we randomly generated
BNs by using the BPART and MPART algorithms and varying these parameters:

• the ratio C/V of the number of non-root nodes, C, to the number of root nodes, V , in the BN,

• the regularity structure of the BN’s underlying graph, and

• the conditional distribution tables (CPTs) of the nodes in the BN.

We have carefully studied how these parameters impact inference hardness, expressed in terms of maximal
clique size or inference time, in tree clustering. We identified, for H�	
�, an easy-hard-harder pattern for
both the BPART and MPART networks. For both classes, generating random networks can result in
very easy instances. On the other hand, by carefully varying parameters along certain dimensions, one can
construct BNs that existing tree clustering algorithms cannot handle. Specifically, we have found that the
C/V -ratio, through its impact on maximal clique size, is an indication of the inferential hardness of the
network under suitable structural and parametric assumptions. As the C/V -ratio grows, even when fixing
the number N = C + V of nodes in the network, the inference problem becomes harder, on average, due to
an increasing maximal clique size. We now summarize our results in more detail.

Four structurally distinct classes of BNs were identified in this article – Class A, Class B, Class C, and
Class D BNs – of which we more closely investigated Class A (regular) and Class B (irregular) BNs. For
Class B irregular BPART BNs, our analysis showed an easy-hard-harder pattern with increasing C/V -ratio.
Through regression analysis, a linear relationship was established between the C/V -ratio and the mean
number of nodes in the maximal clique, giving an approximately exponential growth in maximal clique size
which was also reflected in H�	
� tree clustering inference time. Results were similar for tree clustering’s
M
�
���F
��I�W�
	�� and M
�
���C�
���W�
	�� triangulation heuristics, with the former being
slightly but significantly better in terms of optimizing maximal clique size.

A second structural parameter we considered, again using the BPART construction, was the regularity
of the underlying graph of the BN. Our analysis showed that regular Class A BPART BNs should be harder
than irregular Class B BPART BNs, and this expectation was confirmed in experiments. A regression
analysis exhibited exponential growth in maximal clique size as a function of C/V -ratio, similar to the
irregular case. We also showed experimentally, while keeping other parameters of the generated networks

35

fixed, that maximal clique size sample means were from 3.0 to 5.4 times greater for Class A BNs compared
to Class B BNs. These results also shed new light on the computational benefit of irregularity in information
theory BNs [27,28,48].

Our studies with MPART used quite different input parameters for BN sample generation. Still, the
regression results bear resemblance to BPART’s regression results. There turned out to be approximately
linear growth in the mean number of nodes in the maximal clique as a function of C/V , giving an ap-
proximately exponential growth in maximal state space size, from which one can expect an approximately
exponential growth in inference times. In fact, the graph of averages showed slightly stronger than expo-
nential growth. It also turned out that previous work with a similar class of BNs, using C/V ≤ 0.75 [41],
correspond to a relatively easy region of the MPART distribution.

Since the complexity of most exact Bayesian network inference algorithms – including tree clustering
algorithms, conditioning algorithms, and elimination algorithms– depend on treewidth or optimal (minimal)
maximal clique size [5,17,20,21], we believe that our results are of interest to researchers investigating exact
Bayesian network inference algorithms. Our empirical results are limited by the fact that we employed the
suboptimal M
�
���F
��I�W�
	�� and M
�
���C�
���W�
	�� triangulation heuristics; however due
to the hardness of BN inference problems [1, 14, 60, 66] and the widespread adoption of these and similar
heuristics we believe that our results are of significant interest.

In addition to showing some interesting aspects of H�	
� and the tree clustering approach, we believe this
line of research to be essential so that valid experimental evaluation of other algorithms can be performed.
For instance, in related work we have used BPART and MPART networks to benchmark stochastic local
search and have found strong dependence of inference time on the C/V -ratio, qualitatively similar to the
results reported here [51, 53]. The approach of constructing synthetic BNs has guided us in developing a
stochastic local search approach to the point where it outperforms H�	
� on certain synthetic instances as
well as on certain application BNs [51,53]. Similar research would help in developing a better understanding
of different algorithms under varying conditions. In particular, our results can be used by other researchers
to focus their work on areas in the space of Bayesian networks where we found time- or space-consumption
to be relatively high for tree clustering.

This research can be extended in several other directions. It is important to develop a better understand-
ing of other dimensions (beyond C/V , regularity and different CPT types), intermediate cases, and other
inference algorithms. While we have studied extreme cases in a few dimensions, it is essential to perform
similar studies for other dimensions. Other important areas include improved analytical models for clique
tree cluster formation and growth, loop formation, interactions between loops, and the placement of fill-in
edges in the moral graphs induced by BNs. A better understanding of the relationship between synthetically
generated networks and networks from applications would also be a natural extension of this research.

Acknowledgments

The research reported here was largely conducted while Ole J. Mengshoel was at the University of Illinois,
Urbana-Champaign. Ole J. Mengshoel and David C. Wilkins gratefully acknowledge support in part by ONR
Grant N00014-95-1-0749, ARL Grant DAAL01-96-2-0003, and NRL Grant N00014-97-C-2061. Dan Roth
gratefully acknowledges the support of NSF grants IIS-9801638 and SBR-987345. Vadim Bulitko, David
Fried, Song Han, William Hsu, Brent Spillner, and anonymous reviewers are acknowledged for comments
related to this work. David Fried, Song Han, and Misha Voloshin are acknowledged for their co-development
of the software used in the experiments.

References

[1] A. M. Abdelbar and S. M. Hedetnieme. Approximating MAPs for belief networks is NP-hard and other
theorems. Artificial Intelligence, 102:21—38, 1998.

[2] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen. HUGIN–a shell for building Bayesian
belief universes for expert systems. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, volume 2, pages 1080—1085, Detroit, MI, August 1989.

36

[3] S. Andreassen, M. Woldbye, B. Falck, and S.K. Andersen. MUNIN — A causal probabilistic network for
interpretation of electromyographic findings. In Proceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 366—372, Milan, Italy, August 1987.

[4] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings.
Journal of Computer and System Sciences, 18(2):155—193, April 1979.

[5] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability -
a survey. BIT, 25:2—23, 1985.

[6] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM
Journal of Algebraic and Discrete Meththods, 8:277—284, 1987.

[7] A. Becker and D. Geiger. Approximation algorithms for the loop cutset problem. In Proceedings of the
Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 60—68, San Francisco,
CA, 1994.

[8] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, New York, 1972.

[9] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Improving the analysis of dependable
systems by mapping fault trees into Bayesian networks. Reliability Engineering and System Safety,
71(3):249—260, 2001.

[10] N. Chater and C. D. Manning. Probabilistic models of language processing and acquisition. TRENDS
in Cognitive Sciences, 10(7):335—344, 2006.

[11] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence, pages 331—337, Sidney, Australia,
1991.

[12] M. Ciaramita and M. Johnson. Explaining away ambiguity: Learning verb selectional preference with
Bayesian networks. In 18th International Conference on Computational Linguistics (COLING-00),
pages 187—193, Saarbrücken, Germany, 2000.

[13] D. Clark, J. Frank, I. Gent, E. MacIntyre, N. Tomov, and T. Walsh. Local search and the number
of solutions. In Proceedings of the Second International Conference on Principles and Practices of
Constraint Programming, volume 1118 of LNCS, pages 119—133, 1996.

[14] F. G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42:393—405, 1990.

[15] P. Crescenzi and V. Kann. A compendium of NP optimization problems. Technical Report SI/RR-95/02,
Dipartimento di Scienze dell’Informazione, Universita di Roma "La Sapienza", Roma, Italy, 1995.

[16] A. Darwiche. Conditioning methods for exact and approximate inference in causal networks. In Pro-
ceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages
99—107, Montreal, Canada, 1995.

[17] A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5—41, 2001.

[18] A. P. Dawid. Applications of a general propagation algorithm for probabilistic expert systems. Statistics
and Computing, 2:25—36, 1992.

[19] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113(1-
2):41—85, 1999.

[20] R. Dechter and Y. El Fattah. Topological parameters for time-space tradeoff. Artificial Intelligence,
125(1-2):93—118, 2001.

[21] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Artificial Intel-
ligence, 34(1):1—38, 1987.

37

[22] F. J. Diez. Local conditioning in Bayesian networks. Artificial Intelligence, 87(1-2):1—20, 1996.

[23] G. A. Dirac. Some theorems on abstract graphs. In Proc. London Math. Soc., volume 2, pages 69—81,
1952.

[24] Hugin Expert. Hugin API: Reference Manual. Hugin Expert, 2004.

[25] J. Franco and M. Paull. Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability
problem. Discrete Applied Mathematics, 5:77—87, 1983.

[26] J. Frank, P. Cheeseman, and J. Stutz. When gravity fails: Local search topology. Journal of Artificial
Intelligence Research, 7:249—281, 1997.

[27] B. J. Frey. Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge,
MA, 1998.

[28] R. G. Gallager. Low density parity check codes. IRE Transactions on Information Theory, 8:21—28,
Jan 1962.

[29] X. Ge, D. Eppstein, and P. Smyth. The distribution of loop lengths in graphical models for turbo
decoding. IEEE Trans. Information Theory, 47(6):2549—2553, September 2001.

[30] P. W. Gu, J. Purdom, J. Franco, and B. W. Wah. Satisfiability Problem: Theory and Applications,
chapter Algorithms for the Satisfiability SAT Problem: A Survey, pages 19—152. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1997.

[31] M. Henrion. Search-based methods to bound diagnostic probabilities in very large belief networks. In
Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-91), pages
142—150, University of California at Los Angeles, CA, 1991.

[32] E. J. Horvitz, H. J. Suermondt, and G. F. Cooper. Bounded conditioning: Flexible inference for decisions
under scarce resources. In Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence
(UAI-89), pages 182—193, Windsor, Ontario, 1989. Morgan Kaufmann.

[33] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide. International Journal of
Approximate Reasoning, 15:225—263, 1996.

[34] J. S. Ide and F. G. Cozman. Generating random Bayesian networks. In Proceedings on 16th Brazilian
Symposium on Artificial Intelligence, pages 366—375, Porto de Galinhas, Brazil, November 2002.

[35] J. S. Ide, F. G. Cozman, and F. T. Ramos. Generating random Bayesian networks with constraints on
induced width. In Proceedings of the 16th European Conference on Artificial Intelligence, pages 323—327,
2004.

[36] W. Jackson. Hamilton cycles in regular 2-connected graphs. Journal Comb. Theory Ser. B, 29:27—46,
1980.

[37] F. V. Jensen. An Introduction to Bayesian Networks. Springer-Verlag, New York, 1996.

[38] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal probabilistic networks by
local computations. SIAM Journal on Computing, 4:269—282, 1990.

[39] F. V. Jensen, K. G. Olesen, and S. K. Andersen. An algebra of Bayesian belief universes for knowledge-
based systems. Networks, 20(5):637—659, August 1990.

[40] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek, P. Asaro, O. J. Mengshoel, D. Kessler, M. Lu-
centi, I. Choi, N. Tu, and J. Schlabach. CoRAVEN: Modeling and design of a multimedia intelligent
infrastructure for collaborative intelligence analysis. In Proceedings of the International Conference on
Systems, Man, and Cybernetics, pages 914—919, San Diego, CA, October 1998.

38

[41] K. Kask and R. Dechter. Stochastic local search for Bayesian networks. In Proceedings Seventh In-
ternational Workshop on Artificial Intelligence and Statistics, Fort Lauderdale, FL, Jan 1999. Morgan
Kaufmann.

[42] U. Kjaerulff. Optimal decomposition of probabilistic networks by simulated annealing. Statistics and
Computing, 2:7—17, 1992.

[43] I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence,
7:317—337, 1993.

[44] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational experiments.
In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors, Electronic Notes in Discrete Mathematics,
volume 8. Elsevier Science Publishers, 2001.

[45] H. Langseth and L. Portinale. Bayesian networks in reliability. Reliability Engineering and System
Safety, 92(1):92—108, 2007.

[46] S. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and
their application to expert systems (with discussion). Journal of the Royal Statistical Society series B,
50(2):157—224, 1988.

[47] Z. Li and B. D’Ambrosio. Efficient inference in Bayes nets as a combinatorial optimization problem.
International Journal of Approximate Reasoning, 11(1):55—81, 1994.

[48] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Improved low-density parity-
check codes using irregular graphs and belief propagation. In International Symposium on Information
Theory, Cambridge, MA, Aug 1998.

[49] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press,
Cambridge, UK, 2002.

[50] A. Madsen. Computing MPEs in Hugin. Personal communication, April 2003.

[51] O. J. Mengshoel. Efficient Bayesian Network Inference: Genetic Algorithms, Stochastic Local Search,
and Abstraction. PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL, April 1999.

[52] O. J. Mengshoel, D. Roth, and D. C. Wilkins. Hard and easy Bayesian networks for computing the most
probable explanation. Technical Report UIUCDCS-R-2000-2147, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL, January 2000.

[53] O. J. Mengshoel, D. Roth, and D. C. Wilkins. Stochastic greedy search: Computing the most probable
explanation in Bayesian networks. Technical Report UIUCDCS-R-2000-2150, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL, February 2000.

[54] O. J. Mengshoel and D. C. Wilkins. Raven: Bayesian networks for human-computer intelligent inter-
action. In M. S. Vassiliou and T. S. Huang, editors, Computer Science Handbook for Displays, pages
209—219. Rockwell Scientific Company, 2001.

[55] D. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions of SAT problems. In Proceedings
of the Tenth National Conference on Artificial Intelligence, pages 459—465, San Jose, CA, 1992.

[56] J. D. Park and A. Darwiche. Approximating MAP using local search. In Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 403—410, Seattle, WA, 2001.

[57] J. Pearl. A constraint - propagation approach to probabilistic reasoning. In L. N. Kanal and J. F. Lem-
mer, editors, Uncertainty in Artificial Intelligence, pages 357—369. Elsevier, Amsterdam, Netherlands,
1986.

39

[58] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[59] N. Robertson and P. Seymour. Graph minors. ii. algorithmic aspects of treewidth. J. Algorithms,
7:309—322, 1986.

[60] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273—302, 1996.

[61] C. C. Ruokangas and O. J. Mengshoel. Information filtering using Bayesian networks: effective user
interfaces for aviation weather data. In Proceedings of the 2003 International Conference on Intelligent
User Interfaces, pages 280—283, Miami, FL, 2003.

[62] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, pages 337—343, Seatttle, WA, 1994.

[63] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pages 440—446, San Jose, CA,
July 1992.

[64] R. D. Shachter, S. K. Andersen, and P. Szolovits. Global conditioning for probabilistic inference in
belief networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-94), pages 514—522, Seattle, WA, 1994.

[65] P. P. Shenoy. A valuation-based language for expert systems. International Journal of Approximate
Reasoning, 5(3):383—411, 1989.

[66] E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68:399—410, 1994.

[67] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann, and G.F. Cooper.
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The prob-
abilistic model and inference algorithms. Methods of Information in Medicine, 30(4):241—255, 1991.

[68] C. Skaaning Jensen and A. Kong. Blocking Gibbs sampling for linkage analysis in large pedigrees
with many loops. Research Report R-96-2048, Department of Computer Science, Aalborg University,
Denmark, 1996.

[69] H. J. Suermondt and G. F. Cooper. Probabilistic inference in multiply connected belief networks using
loop cutsets. International Journal of Approximate Reasoning, 4:283—306, 1990.

[70] R. L. Welch. Real time estimation of Bayesian networks. In Proceedings of the Twelfth Annual Conference
on Uncertainty in Artificial Intelligence (UAI—96), pages 533—544, Portland, Oregon, 1996.

[71] M. Yokoo. Why adding more constraints makes a problem easier for hill-climbing algorithms: Analyzing
landscapes of CSPs. In Proceedings of the Third International Conference on Principles and Practice
of Constraint Programming, volume 1330 of LNCS, pages 357—370. Springer Verlag, 1997.

[72] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. Journal of
Artificial Intelligence Research, 5:301—328, 1996.

40

